Lecture 7
 Trading on an LOM Exchange

We raised several areas worth attending to in our discussion of a single limit order market (the trade off between immediacy and lower price, picking off risk, and insider information). These issues are magnified when trading in a multi-market setting. This session is devoted to giving you some experience in trading simultaneously on an exchange with several markets.

Trading Exchanges

- Day traders typically buy and sell on more than one security at a time.
- One list of the World's 10 most famous traders of all time reads: George Soros, Jim Rogers, Richard Dennis, Paul Tudor Jones, J ohn Paulson, Steven Cohen, David Tepper, Nick Leeson (caused the collapse of Barings Bank).
- Typically day traders fold their position at the end of each "trading day" to avoid exposure overnight to adverse movements in their portfolio.
- This is a very competitive business, and novices run the extreme risk of losing money and sleep.
- Disciplined retirees enjoy the challenge, have the time, and sometimes quite well suited to this occupation.

Recylcing

Imagine you are one of about 40 firms in the recycling business.

- There are four product markets

1. Plastics
2. Metals
3. Glass
4. Paper

- Your upstream collectors have endowed you with 10 units of each product. You also have $\$ 400$ of liquid assets (cash) for trading in these four product markets.

Valuations

- You have also developed a network of clients that will buy all your stock at the end of the garbage collection/disposal period, say a week.
At the end of the week you dispose of all your recycled material a unit (product specific) price or value that is given to you at the beginning of the game.
- Let's call the unit value of plastic units V(Plastic), and so on for the others. You sell each unit of plastic you own at V(Plastic) at the end of the week, and so on.
- Your values are independently drawn from a uniform distribution with support $[0,10]$.
- For example, if you draw V (Plastic) $=9$ but $\mathrm{V}($ Metal $)=1$, then acquiring plastic is much more valuable than acquiring metal.

Value of the firm

- The initial value of your firm is:

Cash $+10^{*}[\mathrm{~V}($ Plastic $)+\mathrm{V}($ Metal $)+\mathrm{V}($ Glass $)+\mathrm{V}($ Paper $)]$

- Your aim is to maximize the value of your firm at the end of the collection/disposal week.
- Let's call the units of plastic you have at the end of the game Q (Plastic). The value of your firm at the end of the collection/disposal period is:

Cash + V(Plastic) Q(Plastic) + V(Metal) Q(Metal) + V(Glass) Q(Glass) + V(Paper) Q(Paper)

Login Instructions

1. Click on Client Play
2. Elick on Available games: "01_recycling_game.mgd"

ComLabGames - Server

```
View Help
```


Continuing Login Instructions

1. Server address: 172.24.168.226 will appear automatically after selecting "01_recycling_game". If not type 172.24.168.226 in smme \square.
2. Write a username.
3. Click on "Login".

ComLabGames - Server
View Help

Design	View	Assignment	Execution	1 Data	ient Play	
			Username Server	Ari		
				172.24.168.226:9876		\checkmark

Trading window before all subjects login

1. In each session sixteen subjects must login before any of them see a trading window.
2. Information about the number of subjects waiting to start the game is shown at the bottom left corner.

Trading window

1. To trade in a specific market like "Paper", click on that market (i.e. Paper).
2. The selected market is highlighted in blue in "Summary data".

Submit a price/quantity in a specific market

 1. Select the market you want to trade in.2. Type a price and quantity, and then click sell to sell and Buy to buy.
3. The limit order book shows outstanding limit orders for a specific market.

Trading window description

1. Limit order book shows all outstanding sell orders in red and all outstanding buy orders in green.
 2. Summary data shows the bid (ask) in green (red).

- ComLabGames

Username: manuel Id: 17 Identity: 1 valuation drawn fron u(H-

View more history

Buy

Price	Quantity	RevenuelCost	Duration	
7.2	2	14.4	577	x
6.1	4	24.4	560	X
0.3	2	0.6	588	x

Price	Quantity	Cumulative	Plaver id	Player type
7.2	2	0	17	Firm (1)
7	3	2		Firm 131
6.1	4	5	17	Firm (1)
5	3	0	18	Firm
3.6	1	3	18	Firm
0.3	2	4	17	Firm

ding quantity submitted by a subject and 11 subject's (Manuel's) sell orders. There
\square

ll orders for $\$ 38.8$

Transaction history

| Price | Quantity | Buyer ID | Buyer Ty... | Seller ID | Seller Ty... Time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | To delete an order click on " x "

- In our example sell limit order for 6.1 and $q=4$ was deleted

Player type:Firm (1)

Difference = updited after a trade - previo ver moudsisset value

Asset name	Valuation	Endowment	Sell orders	Buy order,	Bid , Puantity)	Ask (Quantity)	Trading price (Quantity)
Plastics	0.78	10					5 (2)
Metals	1.72	10					
Glass	8.92	10					
Paper	0.52	8	2 (14.4)	$2(0.6)$	$5(3)$	7 (3)	

Transaction history

| Price \quad Quantity | Buyer ID | Buyer Ty... Seller ID | Seller Ty... Time |
| :--- | :--- | :--- | :--- | :--- |

Player type:Firm (1)

Trading

1. To buy/sell directly select the best order by clicking on the price of the order and click Buy Sell
 2. Summary data and Transaction history snow the executed order.

Trading in a different market

1. Summary data shows last trading price(quantity) for each market.
2. Transaction history shows all transactions for the selected market (in our example it shows "Glass" market)

Subject's own limit orders

Price	Quantity	RevenuelCost	Duration
5	0		

Iransaction history

Price	Quantity	Buyer ID	Buyer Type	SellerID	Seller Type	Time								
0.4	5							6.4	5	19	Firm (3)	20	Firm (4)	$08: 37: 56$
:---	:---	:---	:---	:---	:---	:---								

Price $\$ 6.4$ and quantity 5 was selected and by clicking on Buy, buyer (id = 19) bought glass from seller id $=20$. Her cash decreased to \$345. Her current total asset value is $\$ 750.73=370+$ $9.16 * 13+8.21 * 10+$ $9.14 * 15+7 * 5.35$.

Summary page for trading game

Usernam	Simone Id: 20	dentity: 4					
Player ID	Final Total Asset Value	Initial Total Asset Value	Difference	Q(Plastics)	Q(Metal)	Q(Glass)	Q(Paper)
17	519.38	519.38	0	10	10	10	10
18	675.23	663.36	11.86	8	10	10	13
19	752.57	718.61	33.97	13	10	16	7
20	611.62	599.47	12.15	9	10	4	10

Market	Stage time limit: unlimited	Round: 1
Clayer type:Firm (4)		
Game is over!		

The challenge of optimal trading on a limit order market exchange

The previous lecture described trading those strategies that fully insure traders against loss:

- Straddle your valuation with your personal quote (most attractive buy and sell limit order).
- Place market buy order if your valuation exceeds the ask price (cheapest limit sell order in the book).
- Place market sell order if your valuation is less than the bid price (most expensive limit buy order in the book).
- These guidelines to trading are incomplete; they do not prescribe:
- how tightly to straddle your valuation; tighter quotes increase the number of transactions but reduce the net gain on any given trade.
- how often to place market orders; placing more market orders increases the trading volume but the lower the net gain on each transaction.
- The guidelines are also based on the premise that trading strategies entailing even a small prospect of loss are unacceptable.

What is the basis for measuring exposure to loss?

- Lacking any information about future prices, how does one adjust for risk?
- Such information might come from about the histories of:
- bid and ask prices.
- potentially the whole order book.
- factors that might influence the book.
- Imperfect information can be represented as a probability distribution about the bid and ask, roughly approximated by guessing around it.

Using information about a future spread

- Suppose you are a trader and:
- the current ask is A^{\prime} and the current bid is B^{\prime}.
- at some time in the future (for example at the end of the trading day), if you behave optimally,
- the ask will be A.
- the bid will be B.
- you will close your position (meaning your net acquisition of each security is zero) at this future time with market orders.
- There are 6 cases to consider:

1. $\mathrm{B}>\mathrm{A}^{\prime}$ (The future bid exceeds the current ask.)
2. $\quad \mathrm{B}^{\prime}>\mathrm{A}$ (The current bid exceeds the future ask.)
3. $\mathrm{A}>\mathrm{A}^{\prime}>\mathrm{B}^{\prime}>\mathrm{B}$ (The future spread contains the current spread.)
4. $\mathrm{A}^{\prime}>\mathrm{A}>\mathrm{B}>\mathrm{B}^{\prime}$ (The current spread contains the future spread.)
5. $\quad \mathrm{A}^{\prime}>\mathrm{A}>\mathrm{B}^{\prime}>\mathrm{B}$ (The current spread overlaps the future spread from above.)
6. $\mathrm{A}>\mathrm{A}^{\prime}>\mathrm{B}>\mathrm{B}$ ' (The current spread overlaps the future spread from below.)

- It is instructive to briefly consider each case separately.

1. Future bid exceeds current ask

- Suppose $\left[B^{\prime}, A^{\prime}\right]$ and $[B, A]$ don't overlap and $\mathrm{A}^{\prime}<\mathrm{B}$.
- Then buying the security now (with a market buy order) and selling it later (with a market sell) is profitable.
- In the diagram opposite the dashed line indicates limit orders outside the current spread. For example, placing a:
- a limit sell order above A puts it a long way above A', the current ask.
- a limit buy order below B^{\prime} implies it is below the current bid, by definition.

2. Current bid exceeds future ask

Suppose: [$\mathrm{B}^{\prime}, \mathrm{A}^{\prime}$] and [B, A] don't overlap, and $\mathrm{A}<\mathrm{B}^{\prime}$.

- Then selling the security now (with a market sell order) and buying it later (with a market buy) is profitable.
- In the diagram opposite the dashed line indicates limit orders outside the current spread. For example, placing a:
- a limit buy order below B puts it a long way below B^{\prime}, the current bid.
- a limit sell order above A' implies it is below the current ask, by definition.

3. Future spread contains current spread

- Suppose $\mathrm{B}<\mathrm{B}^{\prime}$ but $\mathrm{A}^{\prime}<\mathrm{A}$.

$$
B<B^{\prime}<A<A
$$

In words, the spread will enlarge, perhaps due to increased volatility, but currently traders hold similar opinions about the uncertainty ahead.

- Here there are no profitable:
- market orders.
- limit orders inside the spread.
- Only limit orders behind the spread are protected against loss, namely:
- Limit buy orders below the future bid.
- Limit sell orders abov the future ask.

4. Current spread contains future spread

- Suppose $B<B^{\prime}$ but $A^{\prime}<A$.
- In words, the spread will contract, perhaps due to decreased volatility that resolves some current differences in opinion about value.
- There are no profitable pairs of market orders (that guarantee transactions and profits).
- There are, however, profitable limit orders that shrink the spread, namely:
- limit buy orders from B^{\prime} up to B
- limit sell orders for A^{\prime} down to A.

5. Current spread overlaps future spread from above

- Suppose $B<B^{\prime}<A<A^{\prime}$.
- There is a downward shift in the spread but it is not very pronounced.
- There are no profitable pairs of market orders (that guarantee transactions and profits).
- Placing a limit sell order inside the spread, between A^{\prime} and A is, however, profitable.
- The only other profitable limit orders are outside the spread.
$B<B^{\prime}<A<A^{\prime}$

6. Current spread overlaps future spread from below

- Suppose $B^{\prime}<B<A^{\prime}<A$.
- There is an upward shift in the spread, but it is not very pronounced.
- There are no profitable pairs of market orders (guaranteeing both transactions and profits).
- Placing a limit buy order inside the spread, between B^{\prime} and B is, however, profitable.
- The only other profitable limit orders are outside the spread.

How do investors differ from traders?

- Suppose the investor:
- has a valuation of V for the security or stock.
- would increase or decrease his holdings by one unit, or maintain the same inventory, depending on which is the most profitable course of action.
- knows the bid-ask spread will be $[B, A]$ and the current spread is $\left[B^{\prime}, A^{\prime}\right]$.
- The investor wishes to adjust the number of securities he holds by:
- increasing his holdings if his valuation is high enough.
- decreasing his holdings if his valuation is low enough.
- In addition to the buy/sell question, there is also a question of timing. Does he trade at:
- the current time?
- after the bid-ask spread changes?
- Again, there are six scenarios, complicated by the fact that the optimal course of action depends on where the valuation lies in relation to both bid-ask spreads. This is a question for Assignment 4.

