Session 3.2
 Revenue from Private Value Auctions

This session exploits the Revenue Equivalence Theorem to derive the derive the revenue from any private value auction.

Steps for deriving expected revenue

- The expected revenue from any auction satisfying the conditions of the theorem, is the expected value of the second highest bidder.
- To obtain this quantity, we proceed in two steps:

1. derive the probability distribution of the second highest valuation
2. obtain its density and integrate to find the mean.

Probability distribution of the second highest valuation

Since any auction satisfying the conditions for the theorem can be used to calculate the expected revenue, we select the second price auction.

- The probability that the second highest valuation is less than v is the sum of the the probabilities that:

1. all the valuations are less than v , or $\mathrm{P}(\mathrm{v})^{\mathrm{N}}$
2. $\mathrm{N}-1$ valuations are less than v and the other one is greater than v . There are N ways of doing this so the probability is:

$$
N P(v)^{N-1}[1-P(v)]=N P(v)^{N-1}-N P(v)^{N}
$$

- The probability distribution for the second highest valuation is therefore:

$$
N P(v)^{N-1}-(N-1) P(v)^{N}
$$

Expected revenue from Private Value Auctions

The probability density function for the second highest valuation v is therefore:

$$
N(N-1) P(v)^{N-2}[1-P(v)] P^{\prime}(v)
$$

Therefore the expected revenue to the auctioneer, or the expected value of the second highest valuation, denoted by $v^{(2)}$, is:

$$
E\left[v^{(2)}\right]=N(N-1) \int_{v_{0}}^{\bar{v}} v P(v)^{N-2}[1-P(v)] P^{\prime}(v) d v
$$

