## Session 3.2

## Bidding in a First Price Sealed Bid Auction

This session derives the Nash equilibrium bidding function in a FPSB auction with private values using the Revenue Equivalence Theorem. We then apply the general formula to the special case in which valuations are uniformly distributed on a closed interval. In that case the bid function is a weighted average of the bottom valuation and the bidder's valuation, where the weights are determined by the number of rivals,

## Using the revenue equivalence theorem to derive optimal bidding functions

- We can derive the solution bidding strategies for auctions that are revenue equivalent to the second price sealed bid auction.
- Consider, for example a first price sealed bid auctions with independent and identically distributed valuations.
- The revenue equivalence theorem implies that each bidder will bid the expected value of the next highest bidder conditional upon his valuation being the highest.


## Bidding in a <br> first price sealed bid auction

In a symmetric equilibrium to first price sealed bid auction, we can show that a bidder with valuation $v_{n}$ bids:

$$
b\left(v_{n}\right)=v_{n}-\frac{\int_{v_{0}}^{v_{n}} P(v)^{N-1} d v}{P\left(v_{n}\right)^{N-1}}
$$

## The derivation

- The probability the remaining N-1 valuations are less than $v$ given the highest valuation is $v_{n}$ is:

$$
\operatorname{Pr}\left\{v^{(2)} \leq v \mid v_{n}\right\}=\left[P(v) / P\left(v_{n}\right)\right]^{N-1}
$$

Differentiating, the conditional density for the second highest valuation is then:

$$
(N-1) P\left(v_{n}\right)^{1-N} P(v)^{N-2} P^{\prime}(v)
$$

- If he wins, the bidding function for n is the expected value of the second highest valuation:

$$
b\left(v_{n}\right)=(N-1) P\left(v_{n}\right)^{1-N} \int_{v_{0}}^{\bar{v}} v P(v)^{N-2} P^{\prime}(v) d v
$$

- Integrating by parts, we simplify this formula to:

$$
\begin{aligned}
b\left(v_{n}\right) & =P\left(v_{n}\right)^{1-N}\left[v P(v)^{N-1}\right]_{v=v_{0}}^{=v_{n}}-P\left(v_{n}\right)^{1-N} \int_{v_{0}}^{\bar{v}} P(v)^{N-1} d v \\
& =v_{n}-P\left(v_{n}\right)^{1-N} \int_{v_{0}}^{\bar{v}} P(v)^{N-1} d v
\end{aligned}
$$

## An example: the uniform distribution

Suppose valuations are uniformly distributed within a closed interval, with probability distribution:

$$
P(v)=\left(v-v_{0}\right) /\left(\bar{v}-v_{0}\right)
$$

Then in equilibrium, a player with valuation v bids a weighted average of the lowest possible valuation and his own, where the weights are $1 / \mathrm{N}$ and ( $\mathrm{N}-1$ )/ N :

$$
\begin{aligned}
b\left(v_{n}\right) & =v_{n}-P\left(v_{n}\right)^{1-N} \int_{v_{0}}^{v_{n}} P(v)^{N-1} d v \\
& =v_{n}-\left(v_{n}-v_{0}\right)^{1-N} \int_{v_{0}}^{v_{n}}\left(v-v_{0}\right)^{N-1} d v \\
& =v_{0} / N+v_{n}(N-1) / N
\end{aligned}
$$

