Session 3.4

Differential Information in FPSB Auctions

This session derives the equilibrium behavior of two bidders competing in a FPSB auction, who have differential information about how valuable the auctioned item is. One (informed) bidder knows the true value before the auction. The other (uninformed) bidder receives a signal about the true value before the auction, only discovering its true value after the auction if she wins.

Bidding with differential information

- Differential information between bidders refers to an auction that some bidders know more about the value of the object being auctioned than the others.
- What happens if bidders are differentially informed about a common value?
- An extreme form of dependent signals occurs when one bidder know the signal and the others do not:
How should an informed player bid?
\square What about an uninformed player?

A theorem on

first price sealed bid auctions

- The previous slide shows that the uninformed bidder plays a mixed strategy in this game.
- The slides below prove that in equilibrium, when the auctioned item is worth v :
\square the informed bidder bids:

$$
\beta(v)=E[V \mid V \leq v]
$$

\square the uninformed bidder makes a random bid from the interval [$0, \mathrm{E}[\mathrm{V}]]$ according to the probability distribution H defined by:

$$
H(b)=\operatorname{Prob}[\beta(v) \leq b]
$$

Return to the uninformed bidder

If the uninformed player bids more than E[V], then his expected return is negative, since he would win the auction every time $v<E[V]$ but less frequently when $v>E[V]$.

- We now show that if his bid $b<E[V]$, his expected return is zero, and therefore any bid $\mathrm{b}<\mathrm{E}[\mathrm{V}]$ is a best response to the informed player's bid.
- If the uniformed bids less than E[V] and loses the auction, his return is zero. If he bids less than E[V] and wins the auction, his return is

$$
\begin{aligned}
E[V \mid \beta(V)<b]-b & =E\left[V \mid V<\beta^{-1}(b)\right]-b \\
& =\beta\left(\beta^{-1}(b)\right)-b \\
& =0
\end{aligned}
$$

Return to the informed bidder

Since the uninformed player bids always less than E[v], so does the informed player.

Noting that $\beta(w)$ varies from \underline{v} to $E[v]$, we prove it is better to bid $\beta(\mathrm{v})$ rather than $\beta(\mathrm{w})$. Given a valuation of v , the expected net benefit from bidding $\beta(w)$ is:

$$
H(\beta(w))[v-\beta(w)]=\operatorname{Pr}\{V \leq w\}[v-\beta(w)]=F(w)[v-\beta(w)]
$$

- Differentiating with respect to w, using derivations found on the next slide, yields $\mathrm{F}^{\prime}(\mathrm{w})[\mathrm{v}-\mathrm{w}]$ which is positive for all $\mathrm{v}>\mathrm{w}$ and negative for all $\mathrm{v}<\mathrm{w}$, and zero at $\mathrm{v}=\mathrm{w}$. Therefore bidding $\beta(v)$ is optimal for the informed bidder with valuation v.

The derivative

- Noting
it follows from the fundamental theorem of calculus that
and so the derivative of $F(w)[v-\beta(w)]$ with respect to w is :

