
II 
ELSEVIER Journal of Operations Management 12 (1995) 273-296 

JOURNAL OF 

Plant objectives as revealed by shop floor activities 

Robert A. Miller * 

Graduate School of lndustrial Administration, Carnegie Mellon Uni~'ersity, Pittsburgh, PA 15213-3890, USA 

Prasad Ramnath 
Parsifal Systems, Pittsburgh, PA, USA 

Abstract 

One problem management scientists face in adapting heuristics to actual applications on the factory floor is eliciting 
preferences from plant managers about the importance of different jobs. Even when the goal of the firm is apparently as 
straightforward as profit maximization, reputation and goodwill can play such critical roles in affecting the revenue flow, 
that exclusively focusing on a few key variables (such as the price of individual items, their production times, and the raw 
material cost) may give a distorted picture about which jobs the firm values most highly. This paper offers a new way of 
eliciting preferences, utilizing high-frequency data on plant operations that are routinely collected by many firms, in order to 
infer the direct and indirect cost of scheduling jobs, from actual job schedules that managers reveal by their choices. We then 
apply our method to a scheduling problem in a steel tube manufacturing plant. After estimating the preferences of the plant 
manager, we demonstrate how our estimates can be used to evaluate heuristics for hard scheduling problems, and to forecast 
the effects of structural change, such as expansion in plant capacity, or shifts in job order flow. 

I.  Introduct ion 

Which new orders fail to materialize because 
current jobs are tardy or defective, the willingness of  
the plant to hold finished-goods inventory rather than 
insist on immediate delivery, even the reputation 
effect from continuing a product line versus with- 
drawing it, are three examples of  how shop floor 
activities help determine the plant 's  performance. It 
is important to know exactly how the goals and 
objectives of  a company are implemented on the 
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shop floor through its scheduling and capital acquisi- 
tion decisions. If  actions taken at the plant level 
reflect priorities that are not aligned with each other 
or, alternatively, are at variance with the espoused 
goals of  management,  this could reveal conflict or 
inefficiency within the organization. Also, unless 
management consultants know the plant 's  objectives, 
useful advice about which decision rule to adopt is 
hard to provide. Similarly, anticipating the effects of  
proposals to change the shop floor typically requires 
the forecasting agency to know what priorities will 
determine how the new work environment will func- 
tion. Let us briefly consider these factors in turn. 

Suppose the priorities revealed by decisions made 
at the plant level do not mirror stated managerial 
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objectives. This could signal a communication prob- 
lem between upper level management and opera- 
tives, or incentives that do not align rewards and 
penalties for shop-floor employees with company 
goals. Similarly, when actions in one part of the 
plant cannot be reconciled, through the same set of 
objectives, with those taken elsewhere, there is scope 
to improving coordination and resolving conflicts 
thus enhancing overall firm performance. Identifying 
these sources of inefficiency is a catalyst for improv- 
ing the overall performance of the plant. 

Another reason why decisions taken on the plant 
floor might sometimes appear at odds with other 
ways the managerial goals are revealed is the sheer 
difficulty of determining how to best implement 
commonly shared objectives. In this case an outside 
consultant might be called to advise the plant on 
which decision rule to adopt. One way or another, 
the consultant must elicit the preferences managers 
exhibit over the trade-offs that limited resources 
impose on the plant, before he can provide useful 
input to his client. 

If, on the other hand, managers are confident that 
the company is efficiently organized, maximizing 
performance subject to the constraints imposed by 
the technology and markets (both of which may be 
fashioned by the firm), then detailed information 
about how plant floor activities affect company goals 
is, potentially, a very useful resource for forecasting 
the effects of innovations (such as the purchase of 
new equipment, or changing the product mix) on the 
shop floor. 

Yet, precisely how such detailed knowledge of 
these very tangible alternatives translate to even a 
simply stated company goal like value maximization, 
is difficult to elicit from management. Unlike aca- 
demics, their goals are chiefly concerned with the 
specifics of the shop floor under their responsibility 
(rather than searching for unifying principles com- 
mon to all shop floors), and have only a tangential 
interest in articulating, or even understanding, their 
own plant in broader terms. Therefore, compared to 
academia, the culture of the workplace is less intro- 
spective, placing more emphasis on direct measures 
of plant performance. 

Decision theorists have confronted the task of 
eliciting preferences with mixed success; in inter- 
views, managers are questioned about hypothetical 

situations in order to determine their preferences. 1 
This approach is an expensive form of information 
retrieval, because the manager must learn decision 
theory well enough to articulate useful responses. 
Indeed, it might be argued that the degree of intro- 
spection required to answer such questions makes 
this approach valuable as a teaching tool for impart- 
ing powerful concepts, but not as a practical guide 
for designing superior heuristics. To put this argu- 
ment another way, shop floor operatives say that 
much learning takes place through experience on the 
job; it is hard to fathom why such a costly form of 
education would be frequently resorted to, if an 
analytic approach, such as that taught in classrooms, 
provided an effective low-cost alternative. 

Protocol analysis circumvents the problem by en- 
coding the manager's actions directly. 2 Conse- 
quently the resulting heuristic implicitly incorporates 
the manager's preferences and the constraints im- 
posed by the production technology, as reflected in 
his responses to the management scientist who is 
conducting the analysis. However, knowledge of the 
coded decision rule by itself cannot be used to 
diagnose communication, incentive and complexity 
problems; nor are such coded rules useful for fore- 
casting the effects of structural changes the plant 
managers might contemplate. To undertake such di- 
agnosis and forecasting, we need to know how the 
coded rules would change in response to new incen- 
tive plans, better computational algorithms and struc- 
tural shifts on the shop floor. For these reasons we 
believe that protocol analysis is more suited for 
replacing (expensive) human resources with (inex- 
pensive) software that makes almost identical deci- 
sions, rather than improving the quality of those 
decisions. 

This paper develops and implements a new ap- 
proach to elicit managerial preferences based on 
their past decisions concerning the scheduling of 
jobs on a day-to-day basis, as found in plant records. 
One advantage of our procedure is that it expends 

1 See (Keeney and Raiffa, 1976) for a definitive treatment of 
this approach or (Zeleny, 1976; Hogarth, 1987) for additional 
work in this area. 

: See, for example, (Newell and Simon, 1972) or (Ericsson and 
Simon, 1984). 
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less managerial time than the other two approaches: 
rather than require the manager to articulate himself, 
demanding that he recast his decisions from the 
perspective of the management scientist, our ap- 
proach gleans information directly from what the 
manager is paid to do, namely, from production 
decisions that he makes on the plant floor. 

We formulate the preferences of the manager as 
an objective function that is known up to a vector of 
parameters to be estimated. This objective function 
could encompass any set of characteristics of the 
jobs, customers, or the condition of the shop floor. 
We assume the plant manager makes scheduling 
decisions that are determined by these preferences, 
that some of those decisions are easy to make opti- 
mally, and that we have access to high frequency 
data which records the outcomes of those optimally 
made (scheduling) decisions. The vector of unknown 
parameters is estimated by matching features of the 
decisions that the manager makes with analogues of 
those generated by the optimal rule. 

This approach has been widely used in economics 
to estimate structural dynamic models of sequential 
decision making under uncertainty with sample pop- 
ulations of panel data. The first applications by 
Miller (1984), Wolpin (1984), Pakes (1986) and Rust 
(1987) have spawned a large and still growing litera- 
ture on estimating models of dynamic discrete 
choice. 3 Following their precedent, formulating a 
dynamic programming model and numerically solv- 
ing the optimal decision rule for many different 
parameter values has become the standard approach 
to estimating models of dynamic discrete choice, 
despite the onerous computational burdens entailed. 
Recently Hotz and Miller (1993) have developed a 
semiparametric estimator for dynamic programming 
problems that avoid the substantial computational 
costs of solving them. 4 

Here we take a slightly different tack. Although 
the optimal decision rule for our scheduling applica- 
tion is NP hard, we demonstrate that part of it, 
scheduling tardy jobs, is quite straightforward, using 

3 See (Eckstein and Wolpin, 1989) and (Rust, 1994) for surveys 
of this fast growing field. 

4 Applications of the Conditional Choice Probability Estimator, 
as it is known, appear in (Hotz and Miller, 1993; Hotz et al., 
1994; Sanders, 1994; Aguirregabiria, 1994; Slade, 1994). 

a forward index rule that is easy to calculate. This 
index rule makes pairwise comparisons between jobs, 
to determine the schedule for tardy jobs. Rather than 
assuming the plant manager can solve the whole 
scheduling problem, we merely assume that, since 
tardy jobs are easy to schedule, he solves this part of 
the scheduling problem correctly. This far weaker, 
identifying assumption enables us to infer some fea- 
tures of the plant's objectives from his decisions 
about the set of tardy jobs alone. 

The next section models a generic factory floor 
and the class of preferences considered here. Section 
3 lays out the procedure used to identify and esti- 
mate managerial preferences, and establishes the 
properties of those estimates. We modify the simula- 
tion techniques developed by McFadden (1989) and 
Pakes and Pollard (1989) for independent processes 
to take account of finite time dependence that one 
typically encounters in manufacturing environments, 
appealing to work by Andrews (1991) to handle 
serial correlation in our nonlinear framework. In the 
fourth section we describe the factory floor of our 
empirical application, and then report our estimates 
of the plant's objectives. The fifth section puts our 
empirical results to work. First we conduct counter- 
factual experiments using different heuristics previ- 
ously proposed in the scheduling literature (after 
some adaptation), comparing them with each other 
on the basis of the estimated objective function 
obtained in Section 4. Then we demonstrate how to 
predict the effects, on output measures and the firm's 
objectives, of changing the shop floor capacity if a 
given rule is used. The last section discusses the 
managerial implications more broadly, and mentions 
some ideas for future research. 5 

2. A framework 

The framework for our analysis can be described 
as follows. A plant manufactures products of differ- 

5 A companion paper (Miller and Ramnath, 1994a), also ana- 
lyzes situations where the computational capabilities of the re- 
searcher may be dominated by the specific knowledge of the 
practitioner, and explains how, even in this situation, structural 
econometrics might help managers who confront hard scheduling 
problems. 
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ent types, on a made to order basis. Let III t denote 
the inflow of new orders at the beginning of day t. 
Foreshadowing our empirical study, w t represents 
the jobs welded upstream on the previous day that 
arrive at the current production stage, but more 
generally this could denote work done on orders at 
various upstream stages or at other plants before 
arriving at the current production stage as raw mate- 
rial input. Denote by xtj a generic order waiting to 
be processed at the beginning of date t, and by 
x t = EJ~ l Xtj the vector sum of outstanding orders, 
where there are Jt outstanding orders on date t. Let 
dt~ ~ [0, 1] denote the fraction of xt~ processed on 
date t. For the purpose of this analysis, we assume 
that w t and x t are elements of a vector space X. The 
vector sum of orders processed on date t is given by 

E dtjxtj. (2.1) 
j = l  

Each day x t is updated by the incoming new orders 
w t which add to the stock and job completions {dtj} 
which deplete it. Unprocessed orders change their 
characteristics only by becoming one day later; none 
of the other characteristics change. Denoting xtj = 
(Xtjo,  Xtj 1 . . . . .  XtjK, Xtj, r+ l )  , where each argument 
represents one of the characteristics of x o, let xtj 0 
denote its lateness in days, that is, the current date t 
less its actual due date. Thus, each day a job is left 
unprocessed, it becomes late by one more day, de- 
noted by f :  X ---> X, where 

f ( x t i  ) = ( X , j o +  1, x t j  , . . . . .  XtjK,Xtj,K+I ) (2.2) 

formally denotes how each job progresses from day 
to the next (if unprocessed). Based on the above: 

J, 

x t+l  = wt + E f ( x , ~  - d t j x , j  ) .  (2.3) 
j= t  

The production stage can in general be a job shop 
consisting of multiple machines and multiple routes. 
When jobs are processed at this stage, they consume 
a certain percentage of the total available capacity. 
We abstract this production stage as a single aggre- 
gate machine, where the processing time of each job 
on this machine, is equivalent to the fraction of the 
daily available capacity at the production stage. Be- 

sides parsimony, this assumption reflects some prac- 
tical limitations we encountered; the data we analyze 
subsequently in Section 4 does not reveal exactly 
what happens to orders within the production stage, 
just information on when they enter and when they 
leave the shop floor. 

The asymptotic properties of the econometric pro- 
cedures used in the empirical portion of this paper 
also rely on the assumption that w t is an exogenous, 
stationary markov process. Note that the markov 
assumption is not a substantive restriction, providing 
one includes lagged variables within the state space, 
appropriately models seasonal effects, and so forth. 
Stationarity is harder to defend, especially given the 
possibility that the 3 year period of daily data we 
exploit in our application may be too short to prop- 
erly accommodate anything but high frequency 
events. In practice, model builders are faced with a 
trade off between shorter data sets like ours, chosen 
partly because there was limited structural change 
occurring on the plant floor during this period, ver- 
sus data sets covering a longer time period. Although 
the latter deal with low frequency stationary pro- 
cesses, they may be more susceptible to nonstation- 
ary structural shifts such as technological change. 

Based on the assumptions above about the daily 
effective capacity at the production stage, the total 
amount of time devoted to processing jobs each day, 
is a random variable that depends on machine break- 
downs and other unforseen stoppages. We normalize 
the mean amount of time available each day to 1 
unit, and denote by ~ the amount of time lost on 
day t due to stoppages, as a proportion of the mean 
time available. Thus E[ ~t] = 0 and negative values 
indicate days when effective capacity was greater 
than usual. The mapping g : X ~ •+ determines 
how much time a job xtj takes to process. We 
further impose the restriction that the processing 
time of a job is independent of its tardiness: 

g (  f (  x t j )  ) = g ( x t j ) .  (2.4) 

Processing time is assumed additive in jobs, which 
implies that the daily capacity constraint can be 
stated as 

Jt 

E d , j g ( x t j )  ~< 1 - ~:t- (2.5) 
j = l  
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The firm is assumed to have preferences over 
processing outstanding orders xtj, which we for- 
mally express as a cost function associated with the 
respective job completion times. Let c(xtj) denote 
the cost of  processing xtj on date t. To make 
headway on partially characterizing the optimal rule, 
we impose three further assumptions on preferences 
(which for the most part were viewed by the man- 
agers of  the plant we studied as being reasonable 
approximations). First, it is assumed that the cost is 
additive in the jobs that comprise x t. Thus, the 
reputational loss and financial penalties incurred from 
delivering one job late are independent of the plant 's  
performance on other jobs. Accordingly let 

lim ~ Y'~ d,jc( xtj ) (2 .6)  
T ~  t = 0  j = l  

denote the average cost of pursuing a job-processing 
policy of {{d,j}/=' l}t=0 when the order flow is {wt}~= 0, 
and it is understood that jobs left unprocessed on the 
shop floor are treated the same way as those com- 
pleted at date infinity. 6 The manager ' s  goal is to 
choose a policy {{dtj}/'=l}~= o to minimize (2.6) sub- 
ject to (2.5). 

Since costs are additively separable across jobs, 
the tardiness of  one job does not affect the costs 
associated with making another job late, or the prob- 
ability that another order might arrive. To investigate 
the importance of the first factor, one would like to 
know whether the timing of various orders is coordi- 
nated by their respective buyers, so that making one 
job late would reduce the value of another order. It is 
hard to believe that orders placed by different firms 
affect each other directly, since the completed jobs 
are to be used in products of  different firms. More 
surprisingly, management informed us that even in 
the case of  two orders by the same firm, there 
seemed to be little coordination on the part of the 
buyers from different parts of the same client firm. 
The assumption that firm performance does not af- 
fect future orders (but only prices of future sales) is 
both a convenient simplification and an important 
limitation of this analysis. The limitation, that can be 

6 This condition is necessary to remove the otherwise trivial 
policy of never scheduling any jobs from being optimal. 

leveled at almost all the academic literature on 
scheduling, stems from the observation that if the 
plant manager changes his scheduling policy, client 
firms will ultimately adopt new expectations about 
how new orders will be treated, and this might affect 
their future demand. 7 This important point is taken 
up again in the conclusion: we regard policy recom- 
mendations coming from analyses like this one as 
useful but, nevertheless, partial. 

The second assumption is that the manager ' s  ob- 
jective function (2.6) minimizes average costs per 
period over an infinite horizon. Our formulation 
differs from standard economic frameworks, which 
typically discount costs to reflect the importance of 
the present over the future. The optimal decision rule 
for this problem is, in fact, the limit of the optimal 
rule for the discounted case as the interest rate facing 
the firm converges to zero. The average loss criterion 
can be defended along empirical lines: since long 
delays are rare in the data we study, the effects of  
incorporating discounting into the empirical analysis 
are probably negligible. Similarly, assuming an infi- 
nite horizon is innocuous. This specification circum- 
vents the end point, or terminal period, phenomena 
of a finite horizon problem, which would affect both 
the optimal scheduling rule (which would no longer 
be stationary), and hence the assumptions exploited 
in estimation. Lacking detailed information about 
what might happen to the plant in the long run, 
investigating the infinite horizon case is a reasonable 
benchmark. 

The third assumption is about the functional form 
of c(xt~). We assume that if a job is processed more 
than p days before its due date, the current cost of 
processing the job for a unit of  time is just z, a 
constant. Such jobs are said to be processed early. 
Likewise, jobs processed less than p days before 
their due dates are considered tardy. 8 We also place 

7 In other words, the scheduling literature implicitly assumes 
that the order flow does not change when an optimal rule replaces 
an inferior heuristic. 

8 The traditional assumption in the scheduling literature has 
been that jobs are tardy when completed after their due dates. By 
controlling for a parameter p we see whether there occurs a 
marked difference in the way jobs are treated by managers when 
tardy based on the classical definition or possibly at a different 
date in the neighborhood of the jobs' recorded due date. 
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some regularity conditions on the curvature of how 
tardiness affects cost, both directly and through its 
interactions with other job characteristics. Our theo- 
retical framework analyzes two classes of prefer- 
ences. The first assumes that costs increase geometri- 
cally with tardiness at a rate which is independent of 
the other characteristics of the job. The second as- 
sumes that the cost of scheduling a job is quadratic 
in tardiness, and that its quadratic coefficient is 
common across all jobs, but permits the linear coeffi- 
cient to depend on the job’s characteristics. Our 
discussion is summarized by the following formal- 
ization. Let xii = (xljl,. . . , x,~,~+~). In the geomet- 
ric class 

‘( xtj 1 

1 

7g( xtj) if P+x,jO < 07 

= 

exP[cOxtjO + cIxijlg(xtj) 
otherwise, 

(2.7) 

where c0 is a positive real number, and clxij is real 
valued, only depending on the fixed characteristics 
of xtj. For the quadratic preference class 

(r8(xtj) if p + xtjO < 0, 

(2.8) 

L +x;,c,)g( xtj) otherwise, 

where cox:j and c, x:j are real valued functions of 
the fixed characteristics of xtj, while c2 is a positive 
real number. 

Under these assumptions, scheduling tardy jobs is 
a straightforward matter. The optimal policy is to 
assign each job an index and prioritize them accord- 
ing to their index values. The index for job xtj is 
defined as any monotonic transformation of 

c( f( xtj>)/g( xtj) - c( xtj)/g( xtj) * (2.9 

In particular, the index for preference class (2.7) 
specializes to 

i( xtj) = exp( c0 xtjo + c1 xii) 

and to 

(2.10) 

i( x,j) = $2 xtjo + c1 Xij 

for preference class (2.8). 

(2.11) 

Thus pairwise comparisons between tardy jobs are 
sufficient to determine their relative importance; tardy 

jobs with higher marginal penalties (index values) 
get scheduled first. Proposition 1 below formally 
states this partial characterization of the optimal 
policy. 9 Note though, that without further restric- 
tions on r (the cost of scheduling a unit of an early 
job), Proposition 1 does not fully characterize an 
optimal forward rule; it only does so for tardy jobs. 

Proposition 1. Suppose that (xii, xtj) CX, p + x,io 
2 0 and p + xtjo > 0 (both jobs are tardy). Zf i(xtj) 
> i(x,,), then xtj must precede x,~ in the optimal 
schedule. 

Appendix A contains the proofs to all the proposi- 
tions. lo 

3. Estimating preferences 

The introduction explained the basis for making 
inferences about the manager’s preferences: if some 
jobs are relatively straightforward to schedule opti- 
mally, then his preferences should be reflected in 
scheduling such jobs. Indeed, if this was false, it 
would be instructive to compare discrepancies be- 
tween the enunciated objectives of the firm with the 
ones the plant manager’s actions reveal. As we 
mentioned in the introduction, such discrepancies 
might arise from not aligning the incentive structure 
to organizational goals, or from poor channels for 
communicating those goals through the hierarchy. 
The previous section showed that scheduling tardy 
jobs is much easier than scheduling early jobs in our 
framework, and so we estimate preferences from 
decisions made for tardy jobs. Our approach esti- 
mates the parameters underlying the cost function 
c(xtj) by simulating schedules for tardy jobs, which 
are then matched with the managers’ decisions. This 
section accordingly analyzes how to estimate these 
preferences. 

9 This proposition is very similar to the WSPT rule in the 

deterministic scheduling literature. See (Baker, 1979; Morton, 

1993) for examples. 

‘” The proof for Proposition 1 relies on an interchange argu- 

ment. Since the costs increase from one day to next, it depends on 

the fractional assumption for d,,, so as to allow partial jobs to be 

completed towards the end of the day, instead of trying to find a 
job that will fit exactly in the remaining time available. 
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We index the class of  parameterizations by 0, 
now writing c ( x t j  o, 0 °)  for c (x t io ) ,  where c ( x , i ,  O) 
is a known function and 0 ° ~ ~9 is the unknown 
parameter vector to be estimated from data on job 
flow. If all the information about jobs at the man- 
ager 's disposal was also recorded without errors in 
the data set, and the model was correctly specified, 
then conditional on x,, the predicted rankings from 
the estimated framework would mimic those actually 
observed in the sample. Since a perfect fit is never 
attainable in practice, we further assume that there is 
information relevant to processing the jobs not con- 
tained in the data. 

We investigate two cases: unobserved heterogene- 
ity in the characteristics of the job, or measurement 
error in the due dates of jobs (due, perhaps, to 
revisions by customers about when they would like 
their orders fulfilled). Let xtj K denote the recorded 
due date of  a job. Accordingly suppose the character- 
istics ( x , j  1 . . . . .  x t j  K)  are observed, whereas Xtj, r + l 
is a random variable that is distributed independently 
and identically with probability distribution function 

G(x t j ,  K+ 1; 0°). 
In the first case we assume that the punctuality of  

job shipments is measured without error: 

x , j  o = t - x~j K . (3.1) 

Since Proposition 1 allows us to characterize an 
optimal rule for jobs that are tardy, we can form an 
optimal rule for those jobs, x t j ,  satisfying the in- 
equality p + x~j 0 >/0. Under this assumption, ~-, the 
cost of  scheduling early jobs, is unidentified, because 
we do not know what principles guide the scheduling 
of early jobs and therefore cannot exploit data on 
them. 

In the second case we assume ~-= ~ and that the 
true lateness x,j o is given by 11 

xt j  o = t - x t j~  - xtj .K + 1" (3.2)  

Under Eq. (3.2), lateness or equivalently tardiness is 
measured with error. This discrepancy in the recorded 
due date, and the one the plant actually observes, 

11 In both assumptions the noise term Xtj,  K + l  is time invariant. 
An order is assigned a unique noise term that is propagated under 
f (x t j )  from one day to the other. Notice that Proposition 1, which 
assumes that only tardiness changes with time, will not hold if 
Xtj.g+ 1 changes over time. 

could be due to changes in the due date of  the order 
that were made after data entry because of  further 
negotiations between the firm and the customer. 12 
Now it is impossible for us to distinguish tardy jobs 
from early jobs, so additional restrictions must be 
imposed on ~-, to apply Proposition 1 in estimation. 
We impose unbounded costs on early delivery, and 
thus completely characterize the optimal rule from 
Proposition 1 (for it is never optimal to process early 
jobs if ~-= 2). The two preference classes illustrate 
how subtle differences in assumptions with regard to 
unobservables can change the characterization of  
optimal rules, as well as the estimation procedure. 

3.1. Es t ima t ion  p r o c e d u r e  

Suppose the conditions for Proposition 1 are met, 
and the plant follows the simple optimal decision 
rule for completing orders under either preference 
class (2.7) or (2.8). Then it is possible to identify and 
estimate preferences up to a parameterization for 

c ( x t j ,  0° ) .  
We first partition the vector space X into Xp, and 

its complement 

[ { x t j : x t y c X a n d  P+Xtjo~O} i f ~ ' < ~ ,  

X if ~'= ~.  

(3.3) 

This partition identifies which jobs were tardy under 
assumption (3.1) and therefore can be used in estima- 
tion. Under Eq. (3.2), Xp consists of  all jobs since a 
full characterization of the optimal policy is possible. 
In principle, a maximum likelihood (ML) estimator 
could be formed from the probability that the ob- 
served schedule occurs conditional on x t at t. How- 
ever, because of  the computational difficulties asso- 
ciated with implementing ML, we adopted a Method 
of  Simulated Moments (MSM) strategy instead. 13 
Intuitively the MSM estimator chooses 0 to match 

1~ Our analysis can be easily extended to account for unobserved 
characteristics, as well as measurement error in the other charac- 
teristics. 

13 The ML estimator is based on the likelihood that the pro- 
cessed jobs had an index higher than the other outstanding orders 
in Xp. Since the number of outstanding belonging to Xp is on 
average 500, numerous multifold integrals must be computed to 
evaluate the likelihood of any candidate parameter vector. 



280 R~A. Miller, P. Ramnath /Journal of Operations Management 12 (1995) 273-296 

sample moments of the schedule with those of a 
schedule for a simulated set of jobs that have the 
same distributional characteristics as the actual jobs. 
Under some regularity conditions described in 
Proposition 2, the MSM estimator, denoted by 0, 
converges to 0 °, and T1/2({~ - 0 °)  is an asymptotic 
normal random variable centered at 0. 

More specifically, the MSM estimation procedure 
generates N sample paths as follows. First, a normal 
random number generator assigns (simulates) a value 
Xtnj, K+l for the unobserved component of each job 
xt~. The random variable xt],r+l is uniquely as- 
signed once for each job in the data at the beginning 
of the simulation, and is therefore invariant in time. 
This value is propagated under f(x~). We define 

" - (  " " ) ( 3 . 4 )  Xtj ~ X t jO , . . . ,  XtjK,Xtj,K+ 1 

as the simulated analogue of the jth job in x r Under 
the assumptions in (3.1) x~0 = xtj o. Under the as- 
sumptions in Eq. (3.2) tardiness is now measured as 

= - " for each simulated job. Each xt~ o t -- Xtj K Xtj, K+ 1 
day the vector sum of the Jt simulated outstanding 
orders is 

Jt 

x7 = E x,~. (3.5) 
j ~ l  

Second, the simulated jobs are ranked by their 
respective index values. Under the first preference 
class tardy jobs are assigned a positive index value 
i(.), and under the second preference class, tardy 
jobs are assigned a positive index value while early 
jobs are assigned a value of - ~ .  Accordingly let 

c(f(x~),  O) /g (x~) -c (x~ ,  O) 
i(xt~; 0 ) =  /g(x~) if p+X~o>~O, 

- c¢ otherwise, 

(3.6) 

denote the index of xt~ as a function of 0, and let 
r(xt~; O) denote its rank amongst the Jt simulations 
for that day. That is, 

r(x~; O)=#{Xtk:i(x~k; O)>~i(x~; 0)}, (3.7) 

where #{. } denotes the cardinality of set {. }. 
Jobs are scheduled in order of their rankings, 

provided that there is enough time (capacity) avail- 

able and that they do not have an index value of -oo 
(that is, provided they are not early). In this fashion 
the simulations generate an index for some particular 
parameter value 0, in the process also determining 
the schedule for that day t. So the third step is to 
simulate scheduling for the hypothetical tardy jobs. 
Denote by 

Jt 

T(t) - Y'~ dtjl{xtj ~Xp}g(xtj ) (3.8) 
j=l 

the available processing time (or actual capacity) for 
the subset of outstanding jobs that are in Xp at t, 
where 1{. } is 1 if its argument is true and 0 other- 
wise. We define h(xt~; O) as the difference between 
the actual schedule and the simulated outcomes that 
would have occurred if 0 had been the true parame- 
ter value, and  {xtnj, K+l }, not {Xtl,K+a}, were the 
shocks for simulation n. Then for each observation, 
we form 

dtj - 1 
J~ 

if E l{x~k~Xp}l{r(xtk; O) 
k = l  

h(x~j; O)= 
~< r(x,~; 0 ) } g ( x ; , )  ~< T ( t )  

and  i( xtnj; 0 ) ~ O, 

dtj otherwise, 

(3.9) 

that is, the difference between the indicator variable 
for the actual schedule and that in the simulation. To 
interpret (3.9) note, for example, that jobs that are 
not scheduled have a simulation indicator of 0, which 
means that the difference between the actual sched- 
ule and the simulation is dtj. By construction 

E[h(x~; 0°)] = 0 .  (3.10) 

In expectation the actual and the simulated schedule 
are the same at the true value of the unknown 
parameter vector. This condition provides the basis 
for establishing that T1/2(0 - 0 °) converges to a 
normally distributed random variable with mean 0. 
For each date t, we construct an r-dimensional 
vector hr(x7; 0), whose elements are differences, 
h(x~; 0), obtained by picking r jobs at random 
from the outstanding orders in Xp. These r jobs 
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along with N simulations are used to construct a 
vector of r sample moments, h~r)(0), 

1 U 
h~T)(O) =-~ E hr(x~; 0). (3.11) 

n = l  

The fourth step obtains a first round estimator, 0, 
by minimizing the criterion function: 14 

( l t~h~Y'(o)  A(~  ~=lh~7)(O)) (3.12) 

with respect to 0, where A is an r X r dimensional 
identity matrix. 

Then we calculate the estimated covariance ma- 
trix: 

- -  f ( j ) ,  (3.13) 
~= T_q j=_r+ 1 
where q is the number of parameters to be estimated 
and ~ ( . )  is the Tukey-Hanning Kernel (Andrews, 
1991): 

j{( x) = { ~l + c°s(~x))/2 
otherwise, 

for [xl  ~<1, 

(3.14) 

b is a bandwidth parameter which determines how 
much correlation between periods is accounted for in 
a sample of finite size and ~5 

-f Y'~ h~T)(O)h~r__)j(O) ' fo r j>~0 ,  
t=j+ 1 

F ( J ) -  1 T 
~ ..,+j,h(T)[O)h~7)(O) ' f o r j < O .  

t= - j + l  

(3.15) 

The last step begins by constructing an optimal 
weighting matrix, setting A to [ ~ ]-~ which we use 
when minimizing (3.12) with respect^to 0 a second 
time to obtain our (final) estimator 0. As we show 
below, the asymptotic covariance matrix for 0 is 

(Q'[X]-IQ) -1 , (3.16) 

where 

oh,( o o) 
Q = E° 0----'~ (3.17) 

and 

, ~ = E  0 Y'~ ht(O°)h,+s(O°) ' , (3.18) 
s =  - M  

where M is an (unknown) finite integer which de- 
notes the degree of temporal independence. (See 
Assumption 2 below.) Consistent estimates of ,~ and 
Q are respectively ,~ and 0 defined as 

1 
(3.19) 

(The partial derivatives for the sample moments are 
obtained numerically by finite differencing.) 

3.2. Large sample properties 

The basis for this estimation procedure rests on its 
asymptotic properties, which can be derived from the 
following assumptions. 

Assumption 1. The class of functions h(xTj, O) 
indexed by 0 ~ 6), is Euclidean. Also 0 o belongs to 
the interior of (9 and is the unique root for 
E[h(xt~; 0)]. 

14 The dimension of hr(Xt, 0), namely, r, can at most  be equal 

to the number of outstanding orders on date t that also are in X o. 
However, this number changes with t, since different days have 

different collections of outstanding orders. This means that when 
we construct sample moments  using h~r)( - ) we cannot average 

them evenly. There are several ways  of deal ing with this problem. 
In our application we restrict r to be the smallest  number of jobs 

that on any date t also are in X o. 
15 The larger the value of b the greater the correlation that is 

accounted for in estimation. Thus correlation between observa- 
tions greater than b periods apart is ignored. 

This regularity assumption is typically satisfied when 
~9 is a closed convex space in R k (implying that 0 o 
is a k-dimensional parameter to be estimated). 16 

Assumption 2. {Xt} is a stationary finite dimensional 
markov process. 

16 Pakes and Pollard (1989) provide a useful discussion on how 

to check whether a class of functions is Euclidean or not. 
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Loosely speaking, this assumption says something 
about how well the sample represents the process 
generating the data. It is weaker than independence, 
permitting correlation between x~ and x t providing 
Is - t I is less than some finite integer M. Even if the 
order flow process from the customers is indepen- 
dent over time, the flow from w t into x t will 
typically be time dependent. This occurs, for exam- 
ple, if orders are processed upstream (at various 
upstream plants) in batches of jobs that have similar 
characteristics. 17 

Assumption 3. g(x t j )  is measured without error. 

This assumption, made to facilitate the exposition, 
imposes the restriction that the processing times of 
the jobs are known and can be easily relaxed, see 
(Miller and Ramnath, 1994b). 

These assumptions are used to establish the con- 
sistency and asymptotic normality of 0. 

Proposition 2. Let 0 be a k × 1 vector which mini- 

mizes (3.12), when A is set to the r × r identity 

matrix, and define ~ using expressions (3.13) 
through (3.15). Let 0 be the k × 1 vector which 

minimizes (3.12) when A is set to ~ -1 .  Then 

converges to 0 ° in probability and T1/2(0 - 0 °) is 
asymptotically distributed as a normal random vari- 

able with mean 0 and variance (Qo,~olQo)-1.  A 
consis tent  es t imator  for  ( Q o • o l Q o ) - 1  is 

4. An application 

The latter half of this article illustrates how the 
techniques described in the previous sections can be 
applied to a plant that produces steel tubes. We 
applied the methods developed in Section 3 to esti- 
mate the manager's preferences. Then the heuristics 

17 In our application consecutive observations are correlated 
with each other because job orders are not processed immediately. 
The lead time between the appearance of a job order and its actual 
shipment date is, however, finite. Therefore, assuming the process 
of job order arrivals exhibits only finite dependence, observations 
sufficiently apart from each other are also uncorrelated. 

described below in Section 5 are run on the plant and 
evaluated relative to the current procedures, as well 
as to each other. We conclude the paper with a 
discussion of some managerial implications. 

4.1. The plant 

The plant in question is a steel-tube mill which 
buys steel billets and coils, and produces customized 
tubing tailored to the client's specifications. A de- 
tailed description of the plant floor and the data is 
given in (Miller and Ramnath, 1994b). Briefly, there 
are two parts to the production process: milling 
(which turns the raw materials into tubes of approxi- 
mately desired dimensions), and finishing (where the 
tubes are made to conform exactly to customer spec- 
ifications). Tubes are welded from steel coil, which 
is first unrolled and twisted with the use of massive 
dies to form a tube. Thereafter the twisted ends of 
the coil are welded together. Several stages comprise 
the subsequent finishing process. After annealing 
(heating to eliminate the stress points), the tube is 
pickled (cleaned in an acid bath). Then to bring the 
tube closer to the customer's specifications, it is 
push-pointed to create a rough edge to allow a vice 
to grip the tube, and cold drawn (clamped at both 
ends in a vice and stretched), annealed and pickled 
again. This process is repeated until the outer diame- 
ter and thickness of the tubes are within the tolerance 
levels of the customer's specifications, at which 
point the tube is cut to size, packaged and shipped. 
The milling process is relatively capital intensive, 
and the finishing labor intensive. Each sequence of 
annealing, pickling, push-pointing, cold-drawing 
comprises a pass in the finishing process. Different 
tubes undergo different numbers of passes before 
being shipped out to the customer, t8 

The orders from customers which are welded 
upstream generate w t. This flow of orders generates 
work-in-process in front of the finishing stage, which 
we treat here as the set of outstanding orders x t, to 
be processed. The scheduling at the finishing stage is 
the process being estimated. The assumptions regard- 
ing the processing-time characteristics allow us to 

18 Bertrand et al. (1990) discuss a similar problem faced by a 
steel tube factory in The Netherlands. 
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abstract the finishing stage as a single aggregate 
machine, where the processing time of any job is 
proxy for the daily capacity utilized at this stage by 
it. 

The data used to analyze this problem are rou- 
tinely collected by the firm to facilitate scheduling, 
and retained to identify jobs coming from the same 
batch in case they suffer from common defects. They 
consist of 17,206 orders processed through the plant 
over a period of 1,055 days starting from 1 January 
1989. Over this period the plant operated for 843 
days. After preliminary cleansing, the data used in 
our study is on 13,647 jobs for a period of 790 
working days, a working day being defined as a day 
when the finishing stage was operational. 19 Of these 
790 days, only 600 are used for the estimation, while 
the entire set is used for reporting summary statistics 
and conducting the counterfactual experiments. The 
data are organized on an order-by-order basis. Each 
entry includes the customer number, the requested 
outer diameter of the tube, the requested wall thick- 
ness, the requested weight, the requested footage, the 
dollar value of the order, the actual outer diameter of 
the welded tube, the actual wall thickness of the 
welded tube, the actual weight of the order when it 
was welded, the number of passes that the order 
went through at the finishing stage, the date that the 
order was entered in the records, the actual date that 
the order was welded, the week that the order was 
promised to be shipped to the customer, the date that 
the customer had requested shipment (which we treat 
in this paper as the due date), and the actual date 
when the order was shipped. The 8 largest customers 
placed 49 percent of the orders, each one placing 
more than 500 orders in total over the three-year 
period. Nineteen percent of the orders are placed by 
about ten medium-sized customers who placed be- 
tween 200 and 500 orders in total. The remaining 32 

19 2328 orders with either invalid welding dates, or shipping 
dates were first deleted. Then orders with invalid prices, or passes 
numbering a total of 393, were removed. Since orders are entered 
by the firm in order of entry dates and not on the actual dates they 
were shipped or welded, the information about what happened at 
the plant on the first and the last few days is incomplete. There- 
fore we delete all observations about orders welded before the 
first 40 days and those shipped after the 1026th day. As a result 
another 838 observations were dropped. 

Table 1 
Summary statistics for job characteristics (standard deviations in 
parenthesis) 

Characteristic Average 

Tardiness (days) max(0, xuo) 23.66 (43.52) 
Urgency (days) x,j I 74.22 (46.2) 
Customer size xtj 2 758.97 (672.87) 

(number of orders) 
Order size (feet) xtj 3 1071.88 (1922.32) 

percent of the orders were placed by the remaining 
small customers. There are 183 customers in total, 
with many of them having placed between one and 
twenty orders over the three-year period. 

Table 1 reports some of the average statistics for 
the characteristics of the orders. The term xtj o de- 
notes, as before, the job's  lateness in days on the 
current date t, and let xtj ~ represent the urgency of 
the order in days, that is, the difference between its 
recorded due date and the date the order was placed. 
The size of the customer who placed the order which 
is evaluated as the total number of orders placed 
over a period of 3 years is denoted by xtj 2. Denote 
by xtj 3 the size of the order in feet. The figures in 
Table 1 are based on averages shipped per day. For 
example, since x,jl denotes urgency, the urgency per 
day is defined as 

1 J, 
j, ~ dtjxtj, ,  (4.1) 

~ j  = I dtj j = 1 

and Table 1 reports the mean and standard deviation 
of the above random variable for t = 30 . . .  820 days. 
In other words, the table reports the m e a n  Xtji, 
which is the mean of the characteristic xtii: 

1 820 1 J' 
- E - -  
Xtji = 790 t=. 1 j= ~ t=l ~.(, at j E dt jxt j i"  ( 4 . 2 )  

In the table tardiness is evaluated as 0 if the job was 
shipped ahead of its due date, and is equal to its 
lateness otherwise. 

4.2. Estimating preferences from the finishing stage 

The methods described in Section 3 were applied 
in order to estimate 2 parameterizations of the plant 
manager's objective function. Not surprisingly, the 
manager was not able to provide us with a paramet- 
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ric specification of his preferences, so we felt that 
estimating two might help us gauge the sensitivity of 
our empirical results to alternative assumptions about 
structure. In addition, important differences between 
the findings generated by the respective specifica- 
tions might illuminate aspects of the data that could 
otherwise remain hidden in the process of imposing 
a particular model structure on the data. 

In addition to the characteristics defined before, 
let xt j  4 denote the recorded due date of the order, 
and xt~ 5 the measurement error which is a random 
variable generated (for each sample path) from a 
normal distribution with mean 0 and standard devia- 
tion 04 (another parameter to be estimated). In the 
parameter specifications below we also assume that 
00, 0 l, 02 and 03 are associated with xtj o, xtj ~, xtj 2 
and xtj 3, respectively, for some 0 ~ O. The estima- 
tor of the true unknown 0 o ~ O, denoted 0, is based 
on how the data shows the work in process inventory 
is finished for shipping. As described in Section 3 
the disturbance xt~ 5 is invariant over time. 

Both parameterizations fall within the exponential 
parameter class (2.7). 

(i) Eq. (3.1) holds, and p = 0. For all jobs for which 
p + xty o >~ O, 

Co(Xtj; O)=exp(OoXt jo)exp(Olx t j l  + 02x,j2 

+ 03xtj 3 + x t i s ) g ( x t j  ) . (4.3) 

In the scheduling literature the first term exp(OoXtj o) 
would denote the penalty for tardiness, whereas the 
remaining part of the cost function that is invariant 
in time would represent the weight of the job, mak- 
ing the scheduling cost an exponentially increasing 
weighted tardiness function. The cost of tardiness for 
this specification is increasing geometrically in tardi- 
ness. This weight of the job, namely 

exp(Olxtj  I + 02xtj 2 + 03xtj 3 + x t j s ) g ( x # ) ,  (4.4) 

depends on the urgency of the order, the size of the 
customer who placed the order, its size in footage 
and the unobservable characteristics. Because of the 
assumptions in Eq. (3.1), the measurement error is 
only over this time-invariant part of the cost of 
scheduling the job. From (2.7) and (4.3), 

c o -= 00 , 

CI( Xtj l  . . . . .  Xt j5)  -~ 01 Xt j l  + 02 Xtj2 + 03Xt j  3 + Xt j  5 • 

From Eqs. (2.10) and (3.6) the index is 

i( x,~; 0 ) = exp( 00 x,, 0) exp( 0, x,i I + 02 x,,2 

+ 03 xti 3 + xt~5). (4.5) 

Since for this specification early jobs are never 
included in X o, no jobs take on an index value of 
--OD. 

(ii) Eq. (3.2) holds, p = 7 and xtj o = t - x t j  4 - x t j  5. 

For all jobs xtj ~ x t such that p + xtj o >1 O, 

Co( X,~;O ) = exp( Ooxtj o) exp(0, xt, , + 02 xt, 2 

+ 03xt j )g (x t j ) .  (4.6) 

In this case, since the assumption in Eq. (3.2) is 
assumed to hold, the measurement error occurs only 
in the lateness term (or equivalently in tardiness) and 
therefore in the tardiness cost, exp(OoXt~o). The cost 
of tardiness is geometric after accounting for the 
measurement error. Otherwise, this parameterization 
is similar to specification (i). Since p = 7, jobs ear- 
lier than 7 days will never be scheduled using an 
optimal decision rule because under Eq. (3.2) the 
cost of scheduling early jobs is ~. The index for 
specification (ii) is very similar to the index for (i). 
For those jobs that are tardy, that is jobs for which 

_ n ~ > 0 ,  xtnjo ~ p + t --  Xtj  4 Xtj  5 

i( x;j;O ) = exp(00x~0 ) exp( O, xtj I + 0 2 x t j  2 

+ 03xtj3). (4.7) 

In addition, early jobs (which will incur an infinite 
cost if scheduled on date t) are assigned an index, 
i(x~; 0 ) =  - m ,  so that they will never be sched- 
uled. 

We set the number of sample moments r to 55, 
the number of sample paths to N to 3 and the 
bandwidth b for computing the covariance matrix 
(using the Tukey-Hanning Kernel defined in (3.14)) 
to 10. The size of the data T is 600 (days). The 
criterion function in (3.12) is constructed, by finding 
r sample moments for t = 1 through 600. The simu- 
lations are repeated for each 0 as the minimization 
routine repeatedly evaluates the criterion function. At 
the end of the second round the covariance matrix 
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Table 2 
Estimation of preferences (asymptotic standard errors in parentheses) 

285 

Character- Vari- Coef- (i) exp(00 xtj o) exp(01 xtj I + 02 xtj 2 (ii) exp(00,xq0) exp(01 xtj l + 0 2 Xtj 2 
istic able ficient + 03 xtj 3 + xt./5)g(xu ) + 193 xtj3 ) g ( x u  ) 

Tardiness xtj o Oo 

Urgency xtj I 01 

Customer xtj 2 02 

Feet xtj3 03 
Error xtj5 04 

2.1 X 10 - 4  (1.75 X 10 -5)  

- 9 . 1  x 10 -4  (8.57 X 10 -6)  

1 .07X10 3 ( 3 . 2 4 X 1 0 - 7 )  

2.99 x 10 -4 (2.65 × 10 6) 

8 . 4 9 X 1 0 - 3 ( 1 . 3  X 10 -4  ) 

1.15 x 10 -4  (1.84 x 10 -5) 

4.27 X 10 ̀ 3 (6.78 X 10 5) 

2.81 × 10 -5 (3.98 × 10 -5)  

1.58 x 10 -4  (2.87 X 10 -5) 

1.055 (4.57 x 10- t ) 

Jr 37.70 43.69 
p 0.90 0.77 

for 0 in (3.16) is obtained by varying 0 in each 
dimension by 1 percent while computing the partials 
in (3.19). 20 

The results of the estimation procedure for speci- 
fication (i) and (ii) are shown in Table 2. In parame- 
terization (i), 01 the coefficient governing the ur- 
gency or orders is negative, the more urgent an order 
is, the more it adds to cost. 21 Since both 02 and 03 
are positive, orders have increased priority when 
placed by big customers, or when they are large. All 
the coefficients 00 . . . . .  04 are significantly different 
from zero. Using Tables 1 and 2, we can compare 
the sensitivity of the cost function with respect to 
any particular characteristic. 22 Letting ~q = 
(-~,~0 . . . . .  -~js) be a nominal job, with average char- 
acteristics using up one unit of processing time, 
c(~:tj, 0) denotes the cost of scheduling it. Our 
measure of sensitivity is obtained by increasing each 
characteristic of ~:,j by one standard deviation and 
noting the percentage increase with respect to 
c(~,j, 0). Evaluated at .~,j, the cost c(Yctj, O) is 
2.916, and if we increase the average tardiness by 
one standard deviation, that is, from 23.66 days to 
67.18, then the cost increases by exp(43.52 X 2.1 X 

20 A simplex method using the IMSL math library was called to 
minimize the criterion function. 

21 Since urgency is defined as the difference between the request 
date and the date the order was placed, a smaller value for 
urgency means that a shorter response time is available for the 
plant, and therefore the more urgent the jobs are. 

22 In other words, we compare how the index (or cost) changes 
across a cross-section of jobs available on the shop floor. 

10 4), by 0.92 percent. 23 Similarly increases in 
urgency Xtjl, customer size xtj 2, order size Xtj3, or 
the noise term xtj 5 (with a mean of 0) by one 
standard deviation result in a percentage increase of 
c(.~,p 0) by - 4 ,  105, 77 and 0.86, respectively. 
Therefore, the most important variables as far as the 
cost function goes, in determining the job priorities 
are customer size and order size. In other words, 
customer size is the variable most likely to determine 
why a particular job gets scheduled ahead of another. 
The increase in costs on account of tardiness alone is 
about 2.1 X 10 2 percent a day, as a result of which 
tardiness becomes an important criterion (everything 
else being equal) only for very tardy jobs. Although 
the coefficient for the unobservable x,js, namely its 
variance 04, is significantly different from 0, its 
sensitivity is small relative to the other characteris- 
tics. One can test the overidentifying restrictions 
implied by the parameterization and the sample mo- 
ments. 24 In the case of the sample moments for 
parameterization (i), the test shows that the model 
has a p value of 0.90, or that the restrictions cannot 
be rejected at the 90 percent significance level. 25 

23 The term -~tjs, that is, the mean of xqs, is zero. 
24 See (Hansen, 1982). The test is based on the fact that under 

the null hypothesis, the function Jr defined by T times the 
optimally weighted criterion function is asymptotically X e dis- 
tributed with degrees of freedom equal to the number of overiden- 
tifying restrictions. 

zs We did try a larger value for r (105) and N (5), however, the 
asymptotic gains from these larger values were minimal. In addi- 
tion a larger value for N implies that there are as many simula- 
tions to be conducted while constructing the orthogonality condi- 
tions. This gets to be computationally expensive. 
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All the coefficients are significant in parameteri- 
zation (ii) except for customer size. The coefficient 
for urgency is now positive, implying that less urgent 
orders have higher priorities than more urgent ones. 
An intuitive explanation for this sign reversal exists. 
The second parameterization sets in, a week earlier 
than the first. Consequently, simulated jobs which 
are regarded as early in (i), and are therefore not 
included in the analysis, are being defined as late in 
(ii), and hence matched up to their real counterparts 
in estimation. Although including these additional 
jobs is not the only feature which differentiates the 
parameterizations, we are tempted to conclude that 
their inclusion might be the source of the sign rever- 
sal. The interpretation is that greater urgency in- 
creases the cost index if a job is past its due date but 
receives a lower priority if its due date has not yet 
arrived. As we explain below, this plausible interpre- 
tation should be viewed as evidence against specifi- 
cation (ii). However, the test of the overidentifying 
restrictions shows that they cannot be rejected at the 
77 percent significance level. Comparing sensitivities 
again, w e  note that a nominal job has a cost 
c(Yctj, 0 ) =  1.667. (To obtain Yctj o for this parame- 
terization we add 7 days to the average in Table 1 
since p is assumed to be 7 for this parameterization.) 
Increases in tardiness, urgency, customer size, order 
size, and the unobservable by one standard deviation 
results in the increase of this nominal cost by 0.50, 
37.29, 1.9, 35.4 and 0.012 percent, respectively. So, 
for parameterization (ii), the most relevant terms in 
determining priorities are urgency and order size. 

Several variations on these two specifications were 
estimated. Adding other variables, such as the price 
of the order and the total dollar value from the 
customer, did not yield statistically significant differ- 
ences. 26 More specifically, the additional variables 
were not significant, and the estimated values of the 

existing coefficients did not change significantly. 27 
Unfortunately there is no straightforward way of 
statistically evaluating the relative performance of 
the two specifications models, short of nesting them 
within a common statistical framework. This is a 
computationally cumbersome exercise to undertake 
in a nonlinear model like ours, and was not at- 
tempted. One could use the Akaike (1973) informa- 
tion criterion to assess them, although we do not find 
the justification for this procedure convincing. 

One further recourse for choosing between com- 
peting specifications is to critically study the values 
of the estimated parameters. As discussed above, we 
uncovered indirect evidence that the cost of process- 
ing an order is not monotonic in urgency. Before 
their due date, processing less urgent orders seem to 
be preferred, but after the due date more urgent 
orders have higher index values. If this is true, the 
index used in (ii), which assumes there is no interac- 
tion between tardiness and the fixed characteristics 
(specifically the due date), cannot be optimal. More- 
over, we cannot appeal to the same argument in the 
case of the first parameterization, because its indices 
only apply to jobs processed after the due date. Thus 
we can reject the second parameterization by a con- 
tradiction argument, but not the first. Also the plant 
manager may have views regarding the relative mer- 
its of competing specifications. In this particular 
application, our findings that the coefficient on ur- 
gency takes on a different sign depending on which 
parameterization is adopted, and that customer size is 
not significant in (ii) helps him to differentiate be- 
tween them. Taken overall, these considerations led 
us to favor the first parameterization. 

5. Counterfactual experiments 

As we have demonstrated above, the estimated 
parameters can be used to interpret the nature of the 

26 In addition we tried the linearly weighted case as found in the 
scheduling literature, but the estimated coefficients were statisti- 
cally insignificant. Furthermore, a linearly weighted assumption 
would permit an insignificant job to stay indefinitely on the shop 
floor. However, even in our application where the shop is always 
heavily loaded, we never observed such a scenario. 

27 One could also include interaction terms between the fixed 
characteristics. However, interaction terms between tardiness and 
the other variables destroy the optimality of our simple index rule. 
In this case, one could take a different approach to estimation, and 
we are currently working on this problem. See (Miller and Ram- 
nath, 1994b). 
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objective functions of  the firm when the managers 
make scheduling decisions. Another use for them is 
to suggest alternative decision rules for the f i rm's  
scheduling decisions. A third use is in forecasting the 
effects of structural changes on the shop floor and 
the probability distribution generating job orders. We 
now examine these latter two uses. 

5.1. Evaluating alternative heuristics 

Under parameterization (i), only a partial charac- 
terization of the decisions at the finishing stage is 
possible using a forward rule; it can only be charac- 
terized for jobs that are tardy. With a tardiness 
assumption, it is well known that a complete charac- 
terization of the problem is NP hard, even for the 
simpler linear cost found in the literature. This is 
because once all jobs are considered to be scheduled, 
the tradeoff between early and tardy jobs is hard to 
determine. Under such circumstances it is not realis- 
tic to think that all the scheduling decisions of  
managers are optimal, but only decisions comparing 
tardy jobs. Consequently, the scheduling of early 
jobs, can potentially be improved upon by construct- 
ing different heuristics for the finishing stage. 

Our approach cannot directly compare the plant 's  
performance with those of  alternative scheduling 
rules, unless the managerial decisions are coded, 
because the unobservables known to the managers 
when they make their decisions affect the plant 's  
objective function. However,  we can compare the 
performance of the plant with our decision rules on 
the basis of other characteristics, such as average or 
maximum tardiness. We can also compare different 
decision rules, on the basis of  the evaluated objective 
function, by simulating the unobservables. 

To construct counterfactual histories, we infer 
effective daily capacity the available capacity 1 - ~t 
using (2.5), 

J, 

1 - ~, = Y] d t j g (x t j  ) .  (5.1)  
j= l  

We next simulate the unobservable xtj 5 to obtain an 
equivalent job xt* j that has the same observable 
characteristics as the actual job but with simulated 
characteristics replacing the unknown ones. Given 
this sequence of capacities { l -  ~t}, the simulated 
jobs {xt~}, the processing times {g(xt~)}, and the 

, ^ 

estimates for the objective function c(xtj ,O),  we 
generate scheduling outcomes for the finishing stage 
denoted tt,t*~J,*lr and the sum of outstanding l t ~ t j J j =  l i t  = 17 

* T * orders from the decision rule, {x t }/= 17 where Jt is 
the number of orders in x /  which emerges from 
sequentially applying the decision rule. 28 Statistics 
such as the evaluation of the objective function 
under the simulation, the average or maximum tardi- 
ness can then be easily obtained, for the same arrival 
process that generated the original data. Noting that 
the cost of scheduling early jobs is not identified in 
estimation, we assume that ~-, the cost of  scheduling 
a job more than p days early is 0. All the decision 
rules applied to the finishing stage are forward 
heuristics, using modifications of heuristics already 
available in the literature. For any date t, these 
heuristics generate an index i* (xtj; 0), and process 
orders in a decreasing order of  their index values, to 
fully exploit effective daily capacity (if there are 
enough jobs to process). That is, 

Jr* 

dt~x,j <~ 1 - ~t" (5.2)  
j=l  

The decision rules are as follows: 

Weighted Shortest Processing Time (WSPT) : 

i * ( x t j ;  O ) = i ( x t j ;  0) .  (5.3)  

This heuristic performs well when most jobs are 
tardy, or when the objective is to minimize weighted 
flowtime in contrast to the weighted tardiness objec- 
tive implied in (2.7) or (2.8). In fact, from Proposi- 
tion 1 if all the jobs were tardy it would be the 
optimal rule. 

Rachamadugu and Morton (R&M):  

i (xf j ;  0)  if /9 -~- xtj 0 ~ O, 

i * ( x q ;  O) = i(xt j;  O) e k"M~v+x'j'') otherwise. 

(5.4)  

28 The estimation procedure in Section 3 and the previous one 
use only part of the data (r = 55) to estimate the parameters. In 
contrast, the simulation procedure here is over all the orders 
observed over the relevant time period. This approach allows us to 
compare how all the orders that arrive at the plant are scheduled 
when using different different decision rules. 



288 R.A. Miller, P. Ramnath /Journal of Operations Management 12 (1995) 273-296 

This heuristic is very similar to the Rachamadugu 
and Morton heuristic in the scheduling literature 
(Morton, 1993), with certain modifications to fit the 
estimate objective function of the plant. The parame- 
ter kRM is determined by finding the best schedule. 
Jobs that are less than p days early have the same 
priority as given by Proposition 1. However, jobs 
that are more than p days early have an exponen- 
tially decreasing priority (in earliness), the rate of 
decrease governed by kRM. 

Weighted Covert (WTCOVERT) : 

'i(xtj;O ) if p+xt j  o>10, 

kCOVERT + p "~- Xtj 0 
i* (x t j ;O)= i(xtl;O) kCOVERT (5.5) 

if p + Xtj 0 + kCOVERT >~ 0, 

0 otherwise. 

The parameter kCOVERT is also determined to mini- 
mize the resulting average costs. As before, jobs that 
are less than p days early have a priority given by 
the optimal rule. However, jobs that are more than p 
days early, but less than p + kCOVERX days early 
have a linearly decreasing priority in earliness, which 
goes to 0 for jobs earlier than p + kCOVERT. 

The heuristics were run on the data from the 31st 
working day to the 820th for a total of 790 days. The 
top half of Table 3 compares the performance of the 
heuristics on a number of different dimensions, and 
also the plant (except for average cost per day on 
account of the aforementioned difficulty in knowing 
the unobservables). Since such counterfactual experi- 
ments apply only under the assumptions in (3.1), 

when managers cannot make completely optimal de- 
cisions, c o is obtained using parameterization (i), 
and therefore p = 0. The index i( .)  is the same as 
that for the parameterization as in (4.5), 

( . )  (^.) . i xtj ,  0 =ex p  0 oxt~ o exp 0 txt~ m+02xtj2 

^ , ,) 
+ 03Xtj 3 + Xtj 5 , (5.6) 

where the simulated unobservable xti 5 is generated 
from a normal distribution with mean zero and stan- 
dard deviation /~4. As in Table 1, tardiness is mea- 
sured in terms of averages per day to smooth out 
outliers (particularly in the actual history) and there- 
fore the maximum tardiness is 

1 J, )} 
max j, Y'. dtj max(0,xtl 0 . (5.7) 

t~{31 . . . . .  820} E dtj j = l  

j=t 

Similarly average tardiness is now given by 

1 820 1 J' 
790 E J---'7--~ E dti max(0,xtl0). (5.8) 

t=31 E dtj j=l 
j ~ l  

The average cost is similarly computed as 

1 820 1 J'* 
790 E j" E dt*ic(xt*j)" (5.9) 

t=31 E at;  j = l  

j = l  

In the above equations dt~ replaces dtj and Jr* 
replaces Jt, when the statistics are obtained for the 
heuristics. Using averages per day as summary statis- 

Table 3 
Counterfactual experiments (asymptotic standard errors or standard deviations in parentheses) 

Nominal settings R & M WTCOVERT WSPT Plant 
kRM = 1 × 10 -6 kCOVERT = 79 

Average cost 0.064 (0.027) 0.065 (0.020) 0.064 (0.027) 
Average tardiness (days) 27.15 (8.27) 25.74 (3.27) 27.15 (8.08) 23.66 (43.5) 
Maximum tardiness (days) 401.67 353.29 401.67 151.33 

5 percent increase in capacity 

Average cost 0.059 (0.019) 0.055 (0.028) 0.059 (0.019) 
Average tardiness (days) 15.08 (2.53) 13.46 (2.92) 15.08 (2.52) 
Maximum tardiness (days) 285.8 279.52 285.8 
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tics also enables the construction of the asymptotic 
properties for these heuristics as shown in (Miller 
and Ramnath, 1994b). 29 Since all the heuristics use 
all the available capacity at the finishing stage with- 
out enforcing idleness, the cost of the residual work 
in process at the end of the 820th day, {x, },> 820 is 
treated as zero. A similar treatment is made of the 
residual work in process in the data. 

From the table it can be seen that R & M  and 
WSPT had lower average costs. The constant kaM = 
1 × 10 _6 is very small, which means that the R & M  
indices are almost the same as the index for WSPT. 
Similarly, the constant for WTCOVERT, that is 
kCOVERT, is 79, which means its index is also very 
close to the WSPT index, especially for jobs that are 
not extremely early. Contrary to the conventional 
WSPT rule for the linearly weighted tardiness objec- 
tive in the scheduling literature, this particular ver- 
sion increases in value with increasing tardiness, as 
seen by the construction of the index i(x,j; O) in Eq. 
(4.5) and c(x~j; O) in (4.3). Therefore, our version 
of the WSPT rule performs as well as the other rules 
by implicitly assigning lower priorities to early jobs 
and vice versa. 

The parameterizations in Section 4 were gener- 
ated by conducting a preliminary analysis of the 
data, to determine which characteristics of the orders 
seemed to drive the historical scheduling decisions. 
Direct methods for evaluating the estimates of these 
parameterizations are the standard errors of the coef- 
ficients (which measure the precision of the esti- 
mates), and the Jr statistic (that checks how well the 
equations used in estimation can be reconciled to 
each other). In the parameterizations we studied, the 
coefficients are significant and the overidentifying 
restrictions of the model are not rejected. Now we 
have just shown in this section, how alternative 
scheduling rules for integrating early with late jobs 
orders can be valued, using the estimated prefer- 
ences. Apart from these internal modes of validation, 
one can also take recourse to external ones, namely 
the managers themselves. Indeed, the operations ana- 
lyst or consultant must ultimately convince the end 

20 The standard errors show in parentheses in Table 3 are 
obtained from these asymptotic results. 

user of his or her conclusions. But as mentioned in 
the introduction, there are few grounds to believe 
that managers can articulate their preferences in an 
abstract way, so presenting test statistics, while use- 
ful to the analyst, is unlikely to help in external 
validation. 

We therefore propose augmenting the formal test 
statistics with informal measures, when presenting 
our findings to managers for direct attestation or 
refutation. Taken overall, comparisons based on these 
figures illustrate how one can externally verify the 
estimates and the performance of heuristics. If the 
managers prefer the distributions generated by 
heuristics associated with higher costs over those 
with lower costs, this might indicate that our cost 
function was misspecified, or that managerial priori- 
ties were not coordinated with scheduling on the 
shop floor. In particular, this could imply that the 
characteristics (urgency, customer size or order size) 
which our parameterizations use are either not rele- 
vant, or that the geometric tardiness function is 
misspecified. 

Fig. 1 compares the distribution of lateness per 
day for the plant with that of WTCOVERT. (Recall 
that lateness is the difference between the delivery 
date of the order and its due date, and lateness per 
day is the average lateness of orders shipped on a 
day.) Over the sample period, the plant incurred an 
average lateness per day of 21.75 days (with a 
standard deviation of 20.66 days), whereas the 
heuristic generates an average of 13 days (with a 
standard deviation of 58 days). From these statistics 
it is clear that the heuristic reduces the overall 
average but increases the variance of lateness. The 
maximum lateness at the plant is 158 days, whereas 
the heuristic generates a maximum of 352 days. 
However, the minimum lateness per day at the plant 
was - 6 9  days, compared to only - 3 5  days for the 
heuristic. 

Our findings reported in Section 4 showed that 
tardiness, urgency, customer size and footage signifi- 
cantly affect the revealed cost of tardiness to the 
plant. Accordingly we now present summary statis- 
tics on these dimensions, comparing the plant man- 
ager's (historical) decisions with the counterfactual 
generated by WTCOVERT. Fig. 2 juxtaposes the 
distribution of lateness per day generated historically 
against that generated by WTCOVERT, for orders 
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from customers within the upper 33rd percentile by 
total number of orders placed, so The figures show 
the variance in lateness is greater in the plant histo- 
ries (with a standard deviation of 22 days) than those 
from the heuristic (14 days). In addition, the histori- 
cal average for large customers is about 20 days late, 
whereas WTCOVERT generates an average of - 13 
days. The difference between the plant's perfor- 
mance and the heuristic's arises because the heuristic 
makes better tradeoffs between early and tardy jobs. 
Since the estimates place importance on customer 

30 In other words, the top 33 percent are the smallest set of 
customers who in total placed 33 percent of the total orders at the 
plant over the time period studied. 

size, the heuristic gives large customers a high prior- 
ity (resulting in a low lateness performance). 

Fig. 3 depicts the distribution of the lateness per 
day for less urgent orders (more precisely, the upper 
third of orders based on the urgency measure) for the 
plant and WTCOVERT. It shows that the heuristic 
schedules a larger number of these non-urgent orders 
(average lateness of 21 days and a standard deviation 
of 91 days) later than the plant (average lateness of 
23 days and a standard deviation of 34 days). A 
similar comparison of urgent orders reveals that 
heuristic delivers an average lateness performance of 
11 days (standard deviation of 55 days) compared to 
the historical average of 20 days (standard deviation 
of 21), thus demonstrating that WTCOVERT places 
a greater priority on urgent orders than the plant 
managers. 
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5.2. Forecasting the effects of structural change 

The discussion so far has focused on analyzing 
alternative decision rules for a given shop floor and 
estimated set of preferences. We can equally as well 
investigate counterfactuals that change the underly- 
ing structural environment and hold the decision rule 
fixed. Essentially the same procedure as that de- 
scribed in Section 5.1 is used to forecast the effects 
of, say, changes in the probability distribution deter- 
mining job order flow, or expansion in plant capac- 
ity. When analyzing capacity expansion, which is 
what we do below, there are two exercises one might 
undertake. First, suppose the plant knows the optimal 
rule, or will continue to follow the same priorities 
before and after the structural change occurs. In this 
case, historical data taken from the existing capacity 
can be used to estimate the priorities that guide 

decision making, and by relaxing the current con- 
straint we can then forecast how the decisions and 
hence the overall performance would change (along 
any dimensions of interest). Second, suppose that in 
addition to asking for advice about a better rule to 
manage say, an operation, the plant is considering a 
capacity expansion there. Then our approach would 
be to estimate preferences as before, and then show 
how the candidate heuristic would have performed 
with the same historical order flow but different 
capacity constraints. Since we have not encoded the 
plant's decision rule with respect to early jobs, our 
application takes the second approach. 

To illustrate how the effects of structural change 
can be forcast, we ran counterfactual histories to 
predict the effects of running the three rules, R&M, 
WTCOVERT and WSPT, on average costs and two 
measures of tardiness after undertaking a hypotheti- 
cal increase in plant capacity of 5 percent. Here we 
simply scaled up daily effective capacity 1 - ~t by 5 
percent for each day, although it would be just as 
straightforward to study an expansion that is not 
uniform across days. Then we recalculated how each 
of the decision rules would have processed the his- 
torical job order flow and compute the summary 
performance statistics, using exactly the same ap- 
proach as above. 

Our findings are displayed in the bottom half of 
Table 3. There are 2 main findings. Regardless of 
which rule is adopted, costs and tardiness decline 
quite substantially. This is an interesting result, be- 
cause it shows that an equivalently modest increase 
in plant utilization would improve performance quite 
significantly. The other result is that, based on their 
respective performances, the ordering of the heuris- 
tics switches. Whereas WTCOVERT is more costly 
than the other two heuristics under the nominal 
settings, and is not significantly less tardy, if an 
expansion was undertaken, we predict that WT- 
COVERT's performance would dominate the others. 
This should not be too surprising, since none of the 
heuristics touted here are optimal, they share several 
common features (for example in the way tardy jobs 
are treated), and each of them has been justified in 
the literature. That such heuristics cannot be unam- 
biguously ranked, but depend on the parameters 
characterizing the shop floor (and also managerial 
preferences), add further weight to our general argu- 
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ment for exploiting data on shop floor outcomes to 
draw a precise picture. 

6. Conclusions 

There are several implications that emerge from 
this study, some of which are applicable to industrial 
consulting, and others to operations management and 
production economics. It is convenient to discuss 
them under separate subheadings. 

6.1. Managerial implications 

The basic ingredient to our estimation strategy is 
using high-frequency data on inputs, outputs and 
production times (on flow through the various ma- 
chines and their setups) for an operation that the 
plant manager knows how to solve. The manager 
should be confident that he is using the optimal rule, 
so that his preferences are reflected in the outcomes 
the data record. In order to execute this strategy, we 
ourselves also require the solution to this class of 
scheduling problems (perhaps by exploiting results 
in the operations research literature), stated in terms 
of parameters that at some unknown value (to be 
estimated) characterize the plant manager's prefer- 
ences (which presumably reflect demand for the 
plant's products and its operating costs). With these 
ingredients we showed how to estimate the objective 
function the plant manager is optimizing. 

The estimated objective function has 3 uses. First, 
the estimates can be used as a validation device. 
Confronted with the preferences revealed by his own 
actions, and various implications of those prefer- 
ences, does the plant manager (and his boss) still feel 
comfortable with his decision making abilities? Sec- 
ond, the estimated preferences are helpful to the 
plant manager if he seeks guidance about a hard 
scheduling problem in another part of the plant. 
Using a second source of data on throughput in that 
part, we can evaluate the performance of competing 
heuristics, and thus advise him on which heuristic to 
adopt for the hard scheduling problem. Third, our 
approach provides a way of responding to requests 
by the plant manager for forecasts about how plant 
performance would change if either plant capacity or 
the job order flow changed. 

Along the way, we explained why all the parame- 
ters of interest are not necessarily identified, depend- 
ing on how well the estimated preferences relate to 
their envisaged uses. Thus preferences estimated 
about customers served by one product line might 
not help managers solve a scheduling problem about 
an entirely different product line say, at another firm 
facility. When some but not all the parameters are 
identified (as was the case in our empirical applica- 
tion), comparisons undertaken between competing 
heuristics (such as the difference in average costs) 
depend on the value(s) of the unknown parameter(s) 
assigned by the researcher. Finally, we provided 
statistical measures of the confidence and accuracy 
of the evaluations, and discussed how the results 
might be presented to managers in a digestible form. 

Plant records used for this type of exercise are 
already routinely collected for other reasons, such as 
quality control and accounting requirements. There- 
fore, the practices we recommend do not require 
management to upgrade the plant's information sys- 
tems. However, as our analysis has demonstrated, 
these records are not yet being utilized to their fullest 
extent. Perhaps the most important reason for this 
state of affairs is a lack of sophistication in data 
manipulation, and insufficient working familiarity 
with applied statistical inference at management lev- 
els. Given the widespread adoption of computer- 
based information systems, and the recent develop- 
ment of user-friendly statistical packages, we predict 
that this knowledge will be soon acquired by suc- 
cessful firms. 

6.2. Future research 

Our analysis suggests a new use for research in 
structural econometrics, as a tool for management 
science. Many heuristics and optimal rules for prob- 
lems confronting management are characterized by 
management scientists and operations researchers in 
terms of features that describe not only the produc- 
tion set, but also preferences over multidimensional 
objectives. To make such rules operational, the pa- 
rameters characterizing these preferences must be 
assigned values. We argued in the introduction that 
neither decision analysis nor protocol analysis are 
terribly satisfactory ways of eliciting these values. 
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Therefore, the heuristics and optimal rules derived in 
the operations management and operations research 
literatures are currently missing an important link 
necessary for their adoption in real world environ- 
ments. The thrust of our argument is that the findings 
of structural estimation which exploits high fre- 
quency time series data on actual decisions are infor- 
mative, and can sometimes provide that link. Under- 
taking the empirical exercise we advocate, exploits 
an important source of information about managerial 
preferences, in a systematic fashion. Not only do we 
recover cost functions that can be directly incorpo- 
rated into algorithms based on managerial prefer- 
ences; we also simultaneously estimate the precision 
of those estimates, and supply evidence about how 
well the framework is specified. 

This paper concludes with some remarks about 
where future research might lead. An assumption 
maintained throughout this analysis is that the 
stochastic process characterizing the order flow is 
invariant to changes in decision rules and plant 
capacities. This simplification might be a reasonable 
approximation in the short term. Over the longer 
horizon, surely customers would greet more warmly 
improvements in service due to systematic change, 
than exactly the same service that arose by chance. 
In the former instance, but not the latter, one would 
predict a change in the pattern of future orders. As a 
first pass, one would expect those customers who 
were better off under the new regime to place more 
job orders and those who are worse off to place less 
(although even this apparently innocuous prediction 
is not invariably correct). How much the demand for 
each product lines shifts, and what price response 
this evokes from the firm, all contribute to determin- 
ing the new equilibrium. 

Beyond acknowledging the partial nature of our 
analysis, two directions are worth pursuing. Down 
one road is the challenge of determining when the 
qualitative features of our predictions continue to 
hold validity; in particular, under what circumstances 
do the signs of our cost comparisons remain unaf- 
fected by recognizing equilibrating demand shifts 
that accompany changes in scheduling rules? In the 
other direction is a more ambitious econometric 
analysis that exploits price data to estimate product 
demand directly, and hence incorporate scheduling 
changes within an equilibrium analysis of dynamic 

supply and demand. Both avenues are left for future 
research. 

Appendix A 

Proof of Proposition 1. We first note that to deter- 
mine the optimal policy for jobs, it suffices to know 
the ranking of all possible pairs of jobs, for all 
possible dates. We now show that the optimal order 
for processing two tardy jobs is time invariant. In 
other words, if it is less costly to process job j at 
time t and job i at time (t + 1), than the other way 
around, then for all s ~ {1, 2, 3 . . .  }, it is also less 
costly to process j at time t and i at (t + s), when 
compared with inverting the order. This implies that 
the ranking of all tardy jobs does not change over 
time. Thus any index that preserves this ranking 
forms the basis of an optimal policy for tardy jobs. 

We establish the time invariance property sepa- 
rately for (2.7) and (2.8). Under (2.7) the difference 
between the cost of processing one unit of j on date 
t, one unit of i on (t +s ) ,  and the reverse order 
(when both are tardy on date t) is 

C( X t j ) / g (  xtj ) + c ( fS (  x t i ) ) / g (  xti) 

-- c( fS( Xtj) ) / g  (Xtj)  -- C( Xti) / g  ( Xti ) 

= exp(coX, j  o + c,x' t j)  

+ e x p ( c o ( X , o  + s)  + c ,x; i  ) 

- exp(c0(x,j  o + s)  + c ,x ; j )  

- exp(cox , i  o + ClX;i ) 

= exp(coXt j  o + c ,x ' t j ) (1  - e x p ( c o s ) )  

-- exp( coxti 0 + Cl X;i)(1 -- e x p ( c 0 s ) )  

= [ i (x t j  ) - - i ( x t i ) ] (1  -- e x p ( c 0 s ) )  , (m.1)  

where the last line follows from (2.10). Noting that 
the sign of (A.1) does not depend on s, time invari- 
ance follows immediately. 

Now if i ( x t j )> / i ( x t i ) ,  it immediately follows 
from (A.1) that processing j before i is cheaper, that 
is, (A.1) is negative, since exp(c 0) the geometric 
penalty for tardiness per period is assumed greater 
than 1. 

Now turning to the quadratic cost specification in 
(2.8), the cost difference between processing one 
unit of j on date t and one unit of i on (t + s) and 
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vice versa, providing that both of them are tardy on 
date t is 

c( xtj)//g( xtj ) + c( fS( xti) )//g( xti) 

-- c(  f S (  g t j )  ) / / g (  Xtj ) -- C( Xt,) / g (  x . )  

= c2X~o + XtjoClX', 

"-[- C O X'tj 

+ C2(Xti0 + S) 2 + (Xti0 "a t- S)ClX'ti + CoXtti 

- c 2 ( x , 0  + s )  2 - (X,jo + s)qx;j - CoX;j 

2 t 
-- C 2 Xtio -- Xti 0 Cl Xt i 

-- C O Xrti 

----- S{[ Xtio(2C2) + ClX;i 

- [  xtj0¢2cz) - ClX;j } 

= s[ i( xti ) - i( xtj)],  (A.2) 

where the last line of (A.2) follows from the defini- 
tion of the index in (2.11). Following the same 
argument as above, time invariance follows in this 
case too. Furthermore, if i(xt)>1 i ( x t i )  , then it is 
cheaper to process j ahead of i, since the difference 
between doing j first, and vice versa shown in (A.2) 
will now be negative. [] 

P r o o f  o f  Propos i t i on  2. The proof draws extensively 
from Pakes and Pollard (1989), extending their re- 
sults on inference about independent processes to 
those with finite dependence. To accomplish this, we 
introduce notation which is analogous to theirs and 
strengthens Lemmas (2.8) and (2.17) (on pages 1033 
and 1037 of (Pakes and Pollard, 1989), respectively). 

Accordingly, let P denote the probability associ- 
ated with observing an observation y; let Pt denote 
the empirical measure on y, and write bs t = T1/2(P t 
- P)  for the standardized empirical process. Follow- 
ing Assumption 2 suppose Yt is independent of Ys 
for all s < t - M. For each m ~ {1, . . . ,  M}, define 
Ptm as the empirical measure associated with the 
subsample created by every Mth observation starting 
at m. 

Lemma. Let {h(y, 0 ) : 0  ~ @} be an Euclidean class 
with envelope H for which fH z dP is finite. Then 

sup fh(y ,  o ) d P , ~ y ) -  fh (y ,  o )dP(y ) [  

= o~s(1 ) . ( A . 3 )  

In addition, suppose that the parameterization is L 2 

continuous at 0 °. Then for each sequence of positive 
numbers, { St} converging to zero 

Ivth(y, O ) - v t h ( Y ,  0 ° ) ]  = o p ( 1 ) .  
110-0Oil<8 

(A.4) 

Proof. From the definition of Ptm: 

sup fh(y, O) d P t ( y ) -  f h ( y ,  O) d P ( y )  
0~O 

M 

= oEosup 5=1 f h ( y ,  O) d P t m ( Y  ) 

- f h ( y ,  O) dP(y) 

M 
E sup f h ( y , O )  dPtm(y ) 

m=l O~O -- 

- f h ( y ,  o) O f ( y )  . (A.5) 

By Lemma (2.8) of Pakes and Pollard (1989, p. 
1033) 

sup fh (y ,  o)dPtm(Y)-  fhCy, o )dP fy )  

= Oas(1 ) ( A . 6 )  

for all m ~ {1 . . . . .  M}. Since Mo~(1) = Oas(1), Eq. 
(A.3) follows immediately. Similarly, from the defi- 
nition of v ,  

sup I vth(y, O) - vth( Y, 0°)[ 
rl@-oolr<~ 

" E = sup E ~,mh(y, O) - ~,mh(Y, 0 °)  
II0- 0°ll<~ m=l 

M 
E [vtmh(y, O ) -  vtmh(y, O°)l 

m=l 

=Mop(l) 

= op(1). (A.7) 
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(The second from the last line in (A.7) follows from 
Lemma (2.17) from Pakes and Pollard (1989) on p. 
1037 for independent processes.) This establishes 
(A.4). [] 

The consistency of 0 is established by verifying 
that the conditions of Corollary (3.2) of Pakes and 
Pollard (1989, p. 1039) are met. Since /9 minimizes 

(3.12) the first condition is satisfied by definition. 
Their second condition is an assumption about iden- 
tification, which we also make. Finally, their third 
condition is directly implied by our Eq. (A.3). Using 
the fact that 0 converges in probability to 0 °, and 
applying the ergodic theorem, it now follows that ~ ,  
defined in Eq. (3.13) converges in probability to X, 
and Q converges to Q. Hence, the conditions in 

Lemma (3.4) are satisfied, allowing us to conclude 
that 0 converges to 0 o in probability as claimed. 

The asymptotic distributional properties of ~} are 
established in a similar way. In this case we verify 
that the five conditions in Theorem (3.3) of Pakes 

and Pollard (1989, p. 1040), and the conditions in 
their Lemma (3.4) (p. 1044), is met. Again the first 
condition of Theorem (3.3) follows directly from our 
definition of 0. Likewise, their second condition is 
implied by Assumption 1 and that E[h(y ,  0)] is 
differentiable. Eq. (A.4) is stronger than their third 

condition, while the martingale central limit theorem 
meets their condition (iv). Our Assumption 1 implies 
their condition (v). Finally, the condition in their 

Lemma (3.5) is satisfied because Q converges to Q 
in probability and X converges to X in probability. 
[] 
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