3 -

]—' SRR j‘i "'" E,\‘Fk]i:‘n. j;;‘ (3 ,i ﬁf\ P ;:‘P‘r:f{ ‘1:“\“ Q™ S
Rils - ML Pogaran & 0 Schn

6

Estimating Models of Dynamic
Optimization with Microeconomic Data

Robert A. Miller

1 Introduction

Dynamic eonsiderations fraught with uncertainty are at the heart of many eco-
nomic problems, and over the last 15 years a fiterature that explicitly accounts
for them in empirical and econometric modeling has flourished. Almost all the
structural modeling in this area combines tools from sequential optimization
under uncertainty, with nonlinear and semiparametric estimation techniques,
using data sets drawn from diverse sources. Microeconomics data, that is
cross-sectional and panel data sets which rely on the cross-section for the
asymplotic properties of their estimators, are playing an increasingly important
role in estimating and testing dynamic structural models. This chapter reviews
the class of dynamie models which have been estimated with such data and
discusses the related issues of model building, identification, and statistical

inference. :

1.1 Discrete versus Continuous Choices

The discussion separates naturally into analyzing discrete choice models in
dynamic settings, and reviewing those where choice variables come from a con-
tinuous support, because the equations characterizing the optimum differ in the
1wo cases. When picking between a finite number of choices the value of taking
each choice must be compared with the others, so optimal behavior is character-
ized by the same finite numbcer of inequalities minus one, In contrast, when a
choice can be varied continuously, the net effect of a marginal change on costs
and benefits helps characierize the optimal decision; for example, if the problem
js concave, the solution to a first-order condition fully eharacterizes the optimal
choice. These differences in characterizing optimal behavior are reflected in
modeling the econometric framework. In this respect empiricists sometimes face
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the question of whether the data can be most fruitfully exploited by treating the
choice set as finite and identilying a person’s opportunities and preferences
from the payoffs from basic easily recorded choices {such as whether to enter
the market or not), or (ocusing on choices made at the margin (such as the
extent of market activity observed).

Modeling the choice set as finite implies that people with similar but not iden-
tieal situations might make the same choice. Since information about their mar-
ginal differences is lost by only focusing on broad based options, the
econometrician must consequently maintain stronger assumptions about the
functional form of preferences, opportunities, and the nature of unobserved het-
erogeneity throughout the sample population Lo achieve econometric identifica-
tion. On the other hand, (ocusing on the details of marginal decisions almost
invites misspecification due to measurement error of various kinds. As a practj-
cal matter, it is therefore not surprising to see the same issue being addressed in
one study as a discrete choice problem, yet in another as a continuous choice
problem. depending on the precise nature of the data and other differentiating
features of the respective approaches.

1.2 Statistical Inference and Policy Prescription

The primary virtue of estimating dynamic structural models is that their
unknown parameters have a lransparent interpretation within a coherent theo-
retical paradigm that [rames the empirical investigation. Assuming the posited
economic model is indeed valid, the solution 1o the individuals optimization
problem and/or the fixed point to the equilibrium of the modet, evaluated at the
true unknown parameters, yields the data generating process. Therefore under
the null hypothesis, the observations comprising the dala set are realizations of
random variables whose joint probability distribution can be formally derived
from the dynamic model at the true, unknown set of parameters to he esti-
mated. But how much must be assumed about the model in order to estimalte its
unknown parameters, and how will the resulling estimates guide policy analy-
sis? Apart from deciding which choices should be modeled as continuous ones
and which to treat as discrete, many dynamic models can be estimated with or
without solving the optimal decision rule, thus presenting the researcher with
another methodological decision.

One estimation strategy, full solution maximum likelihood (ML), is 10 derive
the equilibrium and/or optimal decision rule for given values of the unknown
parameters, in order to determine the joint probability distribution for the
observed variables under the null hypothesis, and thus evaluate the likelihood
function at those parameter values. This procedure is repeated for different
parameter values until the vecior which maximizes the likelihood is found. ML
has two important virtues. Under regularity conditions usually assumed, the
estimator is asymptotically efficient, attaining the Cramer-Rao lower bound in .
large samples. Having already computed the joint probability distribution of the



248 Robert A. Miller

observed variables at many different values, perturbing some of the estimated
paramelers to conduct poticy analysis is straightforward.

Nevertheless the use of less efficient instrumental variables {IV) estimators
that impose fewer computational burdens than ML is quile widespread. Rather
than solve the model (sometimes observation by observation and parameter by
parameter), these estimators exploit identifying features of the model's data
generating process, such as a first-order condition for continuous choices, or an
equation linking the probability of making a discrete choice 10 its expected pay-
offs, and construct sample moments from the data that converge to their popu-
lation counterparts at the true parameter values. Although IV estimators are
usually cheaper to compute than ML, human programming time is often
required to solve the model under alternative policy regimes. But 1V estimators
are generally more straightforward to lest, help clarify the nature of identifica-
tion, and consequently encourape researchers to investigate greater numbers of
more sophisticated alternatives with larger data sets. Thus ML might dominate
1V where the structure is transparent (such as in engineering problems), where
the dala set is large enough for the finite sample properties to closely approxi-
mate their asymptotic behavior but small enough to remain compulationally
manageable, and where the policy proposals can clearly be cast within the struc-
tures encompassed by the parameter space. But in the face of large data tracts,
and where uncertainty aboul the appropriate structure (such as modeling the
preferences of agents over nonmarkel goods) necessarily obscures the policy
debate, undertaking IV estimation may be the more informalive approach.

1.3 Applications

To provide a flavor of the range of applied work on dynamic discrete choice,
here are some examples of empirical studies which have been undertaken,
together with a brief explanation of their dynamic aspects. Within labor eco-
nomics, it is convenient to arrange these studies in the order of a person’s life-
cycle. The economics of fertility (Wolpin, 1984: Hotz and Miller, 1988; 1993;
Ahn, 1995) focuses on the income of the family, the value of the mother’s time,
and the demographic structure of the family (such as the number of existing
children) which provide measures of the value from having an (additional)
child. These studies treat offspring as a form of family capital in which choices
about confraceptive measures lead to different pregnancy risks. When to quit
school is the next important stage in the lifecycte thal has been addressed in the
literature on dynamic discrete choice (Wolpin, 1987, Tabor, 1995). The imme-
diate benefit from taking a wage must be offset against the loss from the lower
wages that less education brings. Associated with the decision 1o leave school is
the job search process itsell, reviewed by Neumann in chapter 7 of this volume;
here the issue is whether a successfu! job applicant accepls the offer or contin-
ues 1o search in the hope of finding a better onc. Closely related to the search
process which occurs before accepting a job is the job matching and specific
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human capital accumulation that occurs after a person starts working in it
(Miller, 1984; Keane and Wolpin, 1994b). A person might acquire specific infor-
mation and/or expertise aboul the current job maich through working experi-
ence which only applies to that job, or opt for an alternative use of time that
does not capitalize on previous work experience. Labor force (Eckstein and
Wolpin, 1989b; Altug and Miller, 1997) and welfare participation (Miller and
Sanders, 1996) involve similar issues. The timing of marriage and its effects on
female labor supply also have dynamic implications, such as married women
working fewer hours than single women (Van der Klaauw, 1993). Health care
decisions and absenteeism are another dynamic problem involving trading off
short leaves against a polentially more serious illness (Boswell, 1994). Finally,
economists have estimated dynamic models of retirement (Berkovec and Stern,
1991; Stock and Wise, 1990; Rust and Phelan, 1995); income earned before
retirement raises the standard of living in each year of retirement but reduces
utility in the meantime.

Outside labor economics there has been also considerable interest in applying
dynamic modeling techniques to the activities of firms. See, for example, the
costs and benefits associaled with renewing patents (Pakes, 1986), when to over-
haul bus engines (Rust, 1987; Holz et al., 1994), capiial utilization in the cement
industry (Das, 1992), job scheduling on the factory Roor (Miller and Ramnath,
1995). price adjustments in the presence of menu costs (Slade, 1994), inventory
policy in supermarkeis (Aguirregabria, 1994), lumpy invesiments on farms in
developing countries (Rosenzweig and Wolpin, 1993), nuclear power plant
operations (Rothwell and Rust, 1995), and replacing dairy livestock (Miranda
and Schnitkey, 1995). These examples give some idea of the broad range of
areas Lhat estimation techniques in dynamic structural analysis have addressed.

Perhaps the most widespread applications of continuous choices are in house-
hold consumption and individual labor supply, the former topic being exten-
sively analyzed in chapter 4 of this volume. The discussion in this chapter
emphasizes the equilibrium contex! in which decisions are made (Altug and
Miller. 1990; Cochrane, 1991; Mace, 1991; Nelson, 1994), where a good deal of
work has been done of late. For example, Townsend (1994) compares trading
within and between villages; Hayashi, Altonji, and Kotlikolf {(1996) investigate
trading within versus beiween dynasties and the role of bequests in compe nsat-
ing for deficiencies in market structure; Miller and Sieg (1997) examine regional
versus international trade; and dynamic models of equilibrium have been used
to investigate taxation incidence and changing tax law (Sieg, 1995). Parallel to
the rapidly growing body of work on complete markets is an earlier literature
on the permanent income hypothesis (Hall and Mishkin, 1982; Zeldes, 1989;
Mariger and Shaw, 1993; Luscardi, 1996). This work also brings dynamic struc-
ture to bear in estimation, although parts of it sulfer from an apparent confusion
between estimation with cross-section versus time series data (Chamberlain,
1984). It appears that the permanent income hypothesis does not typically
impose sufficiently strong identification conditions on the budget constraint to
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achieve consistenl estimation with a panel (Altug and Miller, 1990; Altug and
Labadie, 1994; Miller and Sieg, 1997). One response to underidentification is to
impose more structure on the market incompleteness {Margiotta and Mitler,
1994; Rust and Phelan, 1995). Another is to relax the assumption that prefer-
ences over consumption are time additive (Hotz, Kydland, and Sedlacek, 1988;
Shaw, 1989; Altug and Miller, 1997). These extensions are still in their infancy,
and in time, the scope of inquiry will probably be broadened beyond labor sup-
ply and consumption.

1.4 Chapter Overview

Section 2 takes the perspective of a sample respondent.! It presents a canonical
dynamic oplimization problem from the agent’s perspective, who is assumed to
be solving it. The characteristic feature of such problems is that information
arrives over time, and consequently decisions made later on in life depend on
more information. It is convenient Lo partition the types of choices agenis make
into choices over finite sets (such as occupational choice) and those in a vector
space (lor example the level of consumption versus savings). Preferences are
defined over the lifetime and as in almost all this literature we maintain the pos-
tulate of expected utility, which is an identifying assumption in much of the
empirical work. In the case of continuous choices the solution to the agent's
optimization problem often boils down to a first-order condition (called an
Euler equation in dynamic problems), whereas in discrele choice problems a
comparison of the utilities must be undertaken: here Bellman’s (1957) principle
of optimatity often plays an important role.

Alter introducing the class of models that have been empirically investigated
to date and describing the optimality conditions in the next section, sections 3
through 5 review approaches to estimating discrete choice models. One
approach, described and illustrated in section 3, is to solve the agent’s problem
by calculating the optimal decision rule, substituting that rule back into the
agent’'s environment, and using maximum likelihood (ML) to identify and esti-
male the parameters from the outcomes observed in the data. This approach is
computationally intensive, and up until quite recently. apart from simple search
problems with a very specialized structure (Kiefer and Neumann, 1979 1981:
Flinn and Heckman, 1982), it was believed 10 be the only way to estimate
dynamic problems in discrete choice. Thus, most studies in this area have fol-
lowed the first applications of Miller (1982; 1984) and Wolpin (1984) by solving
the optimat decision rule for different sets of parameter values, and sceking the
one which maximizes a likelihood funciion, In practice, the range of problems
which can be computed using ML estimation is quite limited, and this has
spurred efforts in computational algorithms to overcome the so-called cursc of
dimensionality. While a detailed analysis of these computational problems lies
beyond the scope of this chapter, section 4 contains a bricfl discussion of the
three important issues, namely multiple integration, algorithms for solving the
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oplimized lifetime utility, and approximations for the optimal decision rule. Of
course, these issues have relevance within economics beyond estimation with
microeconomics data, and much work on solving economic models applies to
macroeconomics as well, and vice versa?

As it turns out, the presumption that the optimal solution must be found to
estimate dynamic models of discrete choice is unfounded. Section 5 presents a
two-stage estimator which relieves the econometrician from the burden of
explicitly solving the agent's discrete choice problem to obtain estimates with
the usual asymplotic properties. The estimator exploits a new representation of
the optimized expected lifetime utility, or the valuation function (Hotz and
Miller, 1993). It is based on a relation between the conditional valuation func-
tions which arise from making certain choices, and the probability of an outsider
observing those choices being made. To exptain the relation, a simple example
motivates the section before the main representation resull is given. Then sev-
eral different estimation environments are described to show how it has been
applied, while the estimation and testing issues, including a brief discussion of
the small sample properties, are provided al the end of the section.

Although most discrete choice models have been estimated using ML, estima-
tors of dynamic struciural models with continuous choices have been exploiting,
for many years, the first-order condition of the agent’s optimization problem,
thercby circumventing the problem of explicitly deriving the optimal decision
rule. Much of this work stems from the following observation: if the Lagrange
multiplier in a tifetime budget constraint can be recovered, estimated as a fixed
effect, or differenced out of the estimation framework altogether, the Frisch
demands (which are a function of prices and the marginal utility of wealth, and
so are easily derived from the first-order condition when preferences are addi-
tively separable over time in the absence of impediments 1o markets) provide
the basis for an econometric model. Early work (Heckman and MaCurdy, 198(;
MaCurdy, 1981; 1983) assumed (hat agents had perfect foresight (that is, faced
no uncertainty aboul the future) and could borrow or lend withoul constrainis
al a constant interest rale, and that wage growth was constant for comparable
skills and demographics. Although both assumptions are soundly rejected by
the data, the approach applies more generally if there are sufficient opportuni-
ties Lo borrow, lend, and insure (Altug and Miller, 1990). Section 6 analyzes (he
equilibrium generalization of the lifecycle model, including the 1win assump-
tions of complete competitive markeis and time additive prelerences upon
which it is based. After these assumptions are laid out and critiqued, their role
in estimation and hypothesis testing is explained.

Section 7 is essentially a continuation of section 6. It analyzes three aspects of
relaxing time additivity. First, it is sometimes possible to identify subeconomies,
a subset of commaodities and a group of traders, within which marginal rates of
substitution between those commodities might be equalized for people belonging
1o that group. Whether this occurs because of altruism (Hayashi, Altonji, and
Kotlikoff, 1996}, instilutional arrangements within village communities
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{Townsend, 1994), or a rich set of financial and exchange rate securities (Miller
and Sieg, 1997) is less important than whether resources are allocated Pareto
oplimally within the subeconomies themselves. Thus the first part of section 6
shows how the statistical machinery for models with the time additivity property
directly applies to these subeconomies. Second, a large empirical literature has
flourished purporting to test the permanent income hypothesis with microeco-
nomics data. Here the main outstanding question is whether methods developed
for time series can be imported 1o cross-sectional settings, a question which can-
not be answered without an understanding of the equilibrium context in which
agents solve their respective problems. Unfortunately, the central role of time
additivity has not been properly appreciated, an issue which is therefore taken up
in the second part of section 6. Then some complications associated with relaxing
the other part of time additivity, additive separability of preferences, is discussed.

Finally a short conclusion in section 8 steps back from the details of this
study, to provide a quiék overall assessment of the advantages and disadvan-
tages of estimating structural dynamic models with microeconomics data sets.
Its purpose is not to criticize puhlished work, although existing work is obvi-
ously the benchmark against which ncw contributions should be judged. but to
serve as a guardrail for guiding the direction of Future empirical work on
dynamic structural models.

2 Dynamic Structural Models

This section develops a framework for investigating the types of dynamic opli-
mization problems which have been analyzed empirically with micro data. First
the nature of information and the rcsolution of uncertainty are explained. This
leads into a discussion of the choices facing an agent, her preferences. as well as
her production and trading opportunities. The distinction between discrete and
continuous choices is emphasized, because it is reflected in the conditions that
characterize optimal decision making and in the approach to estimation (dis-
cussed later in the chapler).

2.1 Information

There are several elements to the agent's dynamic problem: the information and
environmenl the agent inhabits, how this information evolves over time, the
available choices (including the times they are available), the agent’s utility or
objective function, and the outcomes of choices, all of which are ultimately used to
rationalize behavior observed in the data. Following most of the literature in this
area, this chapter assumes time progresses as a discrele variable. rather than con-
tinuously. Thus production and consumption occur on dates r € {0. 1., T,
where the length ol the horizon T may be finite or infinile.

For all practical purposes the dala econometricians work with consist of finite
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dimensional vectors and a finite number of indicator variables. Consequently we
will assume the model has a Markov structlure, in which the agent does not need
1o remember al! the features of the history to solve her problem, but only a sum-
mary statistic belonging to a finite vector space, here denoted z € Z. Instead of
keeping track of her whole history 1o determine her choice and its outcome, it
suffices to know z,. that is the value of the slate variable z at time 1, and its law
of motion (meaning the probability distribution which characterizes how the
state changes from period to period).

The Z space comprises anything revealed from the past that could be relevant
to current and future choices or payolfs, apart from time itself, which is entered
as a separaie argument as ¢ In the special case where there is no uncertainty
about the future. Z is empty, If past choices directly affect current opportuni-
ties, then these should be included within the z vector as well. (For example,
previous experience in the labor market might affect current wages.) On the
other hand if those choices merely increased the likelihood of an event which
has occurred already (say pasl contraceptive practices affected the probability
of pregnancy). then the event itsell {whether the woman conceived or not}
should enter Lhe state space (thal is, assuming children affect the household util-
ity function}. not the (contraceptive) action. Thus one component of z, could be
the number of years of schooling a woman has had, another the number of years
she has hetd a job uninterrupted, a third might be the number of months since
the most recent vacation. a fourth the size of the family, a fifth her markel
assets, and so on.

2.2 Choices

As mentioned above. il is convenient for model builders Lo partition the choices
of agents into two kinds. discrete choices and continuous choices. Which choice
an agent makes depends on her (current}) information. Letc, = (¢, ..., Cu) E C
denote an M-dimensional veclor of continuous choices made on date r; we
require that decisions made at 1 only exploit information available a1 that time.
This choice can be written as ¢,(z), meaning that if z € Z is the siate of the
world at date 1. then the agent chooses ¢, = ¢(z), or c,, = c,,(z) for each of the
M consumption components. Specializing further, if Z is a finile sel containing
only L elements. then enunciating c(z) involves stating LM values correspond-
ing to what each consumpiion component would take in each state,

Infcrmation plays essentially the same role in guiding discrete choices.
Suppose the agenl must pick one of several actions k€ {0, ..., K} in each
period 1. Lel d,, € [0, 1} be an indicator variable to say whether choice k is
picked or not. Again we require 4,, 1o depend on z,, the agent's information sel
at f. By approprialely designing the choice sel we may assume without loss of
generality thal choices are mutualily exclusive, so that the identity

X .
D=1 (6.1)
k=0
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holds. This identity implies tht d, = (d,, ..., d,,) fully summarizes the agent’s
discrete choices, because if dy, = Oforallk € |1, ..., K) thend, = 1.

In many problems, choices are further constrained in various ways. For example,
taking loans to consume large quantities of goods and services in the early periods
of life may constrain consumption choices later in order to repay the debl. To in-
corporale these constraints, assume that for all £ € [0, ..., K] there exist [ real
valued functions b,,:C X Z — R, denoted b, (¢, 7). which must be nonnegative.
Given (c, z), each of the [ index functions represents a constraint that must be

met lor k to be [easible. More concisely, let b, (¢, 2} = (by(c, 2), ..., bylc, 2))
and assume that il 4,, = 1 for (¢, z)} then:
by(c.2) = 0. (6.2)

In order to jusiify the Lagrangian formulation of the optimization problem used
below, we will assume that il (6.2) does not define a convex set, then all the con-
straints are met with equality at the optimal choice. A ‘choice (¢, d)ECX Dis
said to be feasible at period ¢ for z € Z if (6.1) and (6.2) are satisfied.

2.3 Preferences \

The agent’s preferences are defined over the choices she makes over her lifetime,
and also the state variables themselves. Because current choices affect future pay-
offs, current actions cannot be evaluated without stating how beliefs about the
future are formed, This chapter assumes agents obey the expected utility hypothe-
sis and models their subjective beliefs about future state variables as a probability
distribution which characterizes the siochastic law of motion for z. When z, is a
discrete random variable (that is with finile support) this is exprcssed as:

Priz,, = zlz.c.d, = W)= F(zlz.¢). (6.3)

Equation (6.3) says that z,,, is randomly determined by the current state vari-
able z, and current choices (c, d,). In the case wheére z, has continuous support,
F.(z ! z,. ¢} will denote the probability distribution function fgr z,,, conditional
on (z,.c)and d,, = 1, implying z,,, = z is replaced with z,,, = 2« within the prob-
ability statement on the left side of (6.3). All,hough this notational convention
creates some ambiguity, it should not prove foo confusing in what follows. In
empirical applications, the rational expectatioris hypothesis is rqulmely used as
an identifying assumption.” That is, equation (6.3) and its continitpus anatog are
not just subjective probability distributions describing the agent's beliefs, but
are also assumed (o underlie the data penerating process.
Given beliels formed in this [ashion, lifetime ulility can be defined as the

expected sum of ulilities reccived each period. That is, for each k € [0, ..., K)
andr € (0. 1,..., T} we define a real valued mapping u,(c,, z,) from C X Z and
represent preferences by the functional _
T X
EI> >doulc.z)) z,,]. 6.4)
-
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Expression (6.4) is interpreted as foltows, Suppose that whenever the date/state
coordinate pair is (f, z) the agent makes continuous choice ¢(z) and discrete
choice d(z). In particular, if the agent’s state at date ¢ is z, she might choose |
say, that is sel d, = 1, and make continuous choice ¢. Then the utility she would
receive that period is u,(c(2), 2). Inlegraung over z € Z conditional on her ini-
tial state z,. her expecled utitity at time ¢ is therefore E{3%_,d,(z)ulc(2). 2]
| z). Clearly this expectation depends on all the choices and outcomes in the
meantime. through the transition probability (6.3) plus the decision rules c,(z,)
and d,(z,) for each s < £ hence the dynamics. Summing over periods, the lifetime
expression for expected utility (6.4) is obtained.

If the only direct dependence on t comes from discounting utility received
each period by a constant geomelric rate over time, say 3 € (0, 1), and the hori-
zon is infinite, meaning T = o, the optimization problem facing the agent at
time s is identical to the one facing her at t providing the other state variables
are the same. Therefore the optimal choices are the same, and hence indepen-
dent of the date itself. Called a stationary Markov problem, it has been inten-
sively studied in the dynamic optimization literature. In this special case u,(c, z)
specializes to B'u,(c, z) foreach k € [0,.. .., K}, s0 (6.4) simplifies to:

E[)E iduﬂ'u.(cﬂ )t z..]- (6.5)

=0 k=)

2.4 Optimization

Armed with the notation we have developed, we may state the agent's problem
as follows. For each € {0, L, ..., T] and z € Z, she picks (c, ) EC X D 0
maximize (6.4) subject to (6.1) and (6.2). The solution to this problem can be
interpreted either as an optimal decision rule, expressed as a [unction of the
state z and denoted by a pair of mappings (¢%(z), d2(z)). or as an optimal action’
conditional on the current state z,, denoted as (¢}, d*). Because it adequately
summarizes everylhing the agent remembers (and her current decision cannot
depend on what she has forgotien or discarded as irrelevant), this formulation
of the agent’s problem transmits all the dynamic factors through F,(z* 1 z. ¢),
the transition probability which slochastically determines next period’s state z*
as a function of the current period’s state vector z and the choices (¢, d). There
are three ways z can have an effect. First, the probability distribution
F,.(z*!z.¢c) determining thc next period's state z* depends on the curremt
period’s state z. Second, preferences over current utility 2% | d, u,.(c, z) may
depend on'z directly. Likewise, to the exient that the signs of b, (c, z) depend
on z, the choice set itself is partly shaped by z.

To characlerize ¢}(z) and d;(z). it is convenient Lo recast the problem recur-
sively. To that end, the value function, v[(z) is defined for each (t,z) €
(0..... T| X Z by substituting the optimal decision rule back into the expecied -
lifetime utility function:
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r K
v(2) = E{2 .Zn L{z)ulei(z). )1z, = z]. (6.6)
1= k=
Thus v,(z) is the expected remaining lifetime wtitity from period s onwards when
the state is z and the optimal rule is implemented. Certain technicat conditions
must be salisfied to ensure v,{z) exists as a well defined mapping. For example,
bounding the utility a person can receive in any one period suffices for finite
horizon problems, and adding the assumption of discounting the future geomet-
rically is a common way of dealing with infinile horizon optimization problems.
Having calculated what to choose from period ¢ + 1 onwards, making the period
t choice gives lhe appearance of the first part of a two-period problem. Let
A, (z) be an [-dimensional vector function conforming to the index functions
b,,(c, 2) which defines the Lagrange multiplier associated with those constraints.
The agent chooses (¢,, d) to maximize:
.4

S duluglc, 2) + A(Dbyle, 2) + v, (24)dF, (2% L ¢, 2)]. (6.7)
k=0

This problem can be further decomposed: for each k € (0, ..., K], the agent
chooses ¢, to maximize:

ul:(crl Z) + Ah(z)bll(cr' Z) + jvnl(z‘)th(z. 'C” z)' (68)

Following this line of argument, let ¢! denote the solution 1o maximizing (6.8),
and successively substitute the solution to the K subproblems into current utility
and the (ransition probabilities. Then define the reduced form utilities
u(z) = u, (c*, z) and transition probabilitics F,(z* | k) = F, (z* | c%, z). The
optimal discrete choice o, maximizes:

u,(z) + . (2*)dF(2* 1 2) (6.9)

over k € {0, ..., K], patently a finite discrete choice problem. Since equalion
(6.9) is often the starting point for structural estimation in discrete choice prob-
lems, it is instructive to see how a richer structural framework folds into this
reduced form.

Before discussing the derivation of v{z). several remarks are worth making
about the solution to (6.8). To preface these, instead of simply writing
F.(z" ¢, z) for the transition probability, let us introduce a conditionally in-
dependent random variable, denoled s, with probability density function
h,(s1c, z). and suppose z* be determined by the mapping z* = g(s, c,, 2),
which is assumed diflerentiable almost everywhere. When z has continuous sup-
port, the new notation is linked to F,{(z* | c,, z) through the relation

F.(z*le.2)=Prlz=z*lc.z)

[ Aulstc.zus. (6.10)

PN L
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(In the discrete case z < z* is replaced with z = z* on the top line of (6.10), and
z* = g(s, ¢, 2) is replaced with z* = g(s, ¢,, z) on the second line.) Assuming
(6.8) is differentiable almost everywhere, cf must satisfy the first-order condi-
tion (FOC)

| (e

dby,(c, z) dv,,,(z*) ag(;, €n2)
0 %, + A,(2) *ac' + I a:T" 2, h,(slc, z)ds
+ [ vtz Mlslend) o (6.11)

de,

From (6.11), there are four aspects to marginal adjustments in ¢. The effects on
current utility u,(c,. z) and the shadow value of the feasibility constraints b, (c, z)
require no explanation. Continuous choices have two channels to direct their
dynamic effects. The first is widely acknowledged: current choices may directly
affect future utility or feasibility if lagged endopenous choices form part of the
state variable. For example, cigarelie consumption is widely recognized to be
addictive, which is to say that the marginat utility of current consumption is an
increasing function of past smoking. The second effect is often disregarded in
theory and practice.’ Adjustments in contineous choices may also affect the tran-
sition probability itsell, which is the last term in expression (6.11). Continuing
with the smoking example, it is also well documented that increasing cigareile
consumption raises the probability of death by lung cancer and heart attack.
Equations (6.8) and (6.9) show this characterization of the optimal choices
depends on the valuation function itself, yel from (6.6), the latter mapping is
defined by substituting the optimal decision rule into the lifetime utility. As dis-
cussed in section 4, Bellman’s (1957) principle of optimality provides a construc-
tive way of breaking the apparent circularity of this characterization. To
anticipate: supposing the horizon is finite, consider the solution to the problem in
the final period T. This is a one-period stalic problem and therelore can be easily
solved. Forming the valuation function for states z,, the two-period problem can
now be tackled. An induction compleles the construction for 7. When future util-
ity is discounted, the infinite horizon case can be approximated arbitrarily closely
by a finite horizon problem of sufficient length, and this provides the key o the
proof, which is based on an application of the contraction mapping theorem.

3 ML Estimation of Discrete Choice Models

Given laws of motion for production and preferences, the optimal choices made
in equilibrium generate the stochastic processes that describe the variables
economelricians observe in their cross-sectional or panel data set. The probabil-
ity distributions associated with these stochastic processes form the basis for
underlaking stalislical inference. At the heart of structural estimation is (he
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notion that the criterion function for an estimator of the unknown parameter
vector should be explicitly derived from the stochastic process that helps charac-
terize optimal or equilibrium behavior in the theoretical model itself. The next
two sections of this chapter explore this idea for dynamic discrete choice
models. From a conceptual viewpoint, maximum likelihood (ML) estimation is
the most straighiforward to discuss, and is therefore presented first.

3.1 Variables and Parameters

To date, all empirical work on dynamic discrete choice has concentrated on
models where everything, except the values of a finite number of parameters, is
known about the model.! This deficiency bespeaks another, the problem of
identification, both within the parametric siructure imposed by respective model
builders (and the associated computational difficulties encountered in estima-
lion), and more broadly wilh respect to alternative economic explanations.
Since one major goal of structural estimation is to recover policy invariant struc-
ture in order 1o provide a lestbed [or numerically analyzing alternative policies,
these two related limilations are particularly galling. Unfortunately, policy
recommendations from such models often appear sensitive to exactly what is
assumed about the parametric structure being imposed. Nevertheless the alter-
native research strategy of not interpreting estimated coefficients within any
properly articulated economic paradigm secems even less attractive, and that
indictment has conlinued to propel the advocates of structural econometrics.
Having plainly acknowledged these misgivings. this chapter resumes the busi-
ness of analyzing what has been achieved 1o date. We start with the standard
assumption that the econometrician’s goal is 10 estimate the unknown para-
meler vector §, € 6 in a model that is fully specified up to 8, a compaci convex
subset of a Euclidean vector space.

If all the variables affecting decisions and outcomes were retrospectively
observed, armed with the true values of the parameters, the economist could
deduce at each point in lime exactly how optimizing agents should behave, and
the precise consequences of those decisions. Consequently any deviation
between the model and the data it generated could be attributed solely 1o mis-
specification. Similarly, if only a [inite number of parameters are unknown, then
typically an equally small number of observations are required to infer their
true values, and the remaining observations can be used to check for specifica-
tion errors, a single deviation being sufficient to reject the framework. Because
economists never attain such dramatic precision in forecasting, unobserved vari-
ables (including measuremenl error) are introduced to reconcile their models
with the data.

32 Estimation

The statistical properties of the model critically depend on just where the unob-
served variables enter. Following section 2, suppose the model has a stale space
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representation and, for a randomly selected sample of people, choices are
observed for (at least) one period, along with all the state variables both imme-
diately before and after the choice is made. Changing the subscripting conven-
lion from the previous section to now reflect the orientation towards estimation
with a cross-section or panel, let (d,, z,, z*) now denote for e¢ach person
n € (1.....N] in the sample; her decision d, at the time she was interviewed,
her state variable when making the decision z,, and the stale variable (or next
period z¥. Then the only reason [or not producing an exact fit could be that the
law of motion for the transition equalion is stochastic. So if 8, is the unknown
parameter to be estimated, then in the special case where z, is one of L ele-
ments, F,(z¥ | z,, ;) denoles the probability that z* occurs next period given z,
and, say, that n chooses action k. If F,(z* | z,, 8,) is degenerate, meaning z* is
fully determined by z, and k, then &, is fully revealed by a small number of
observations. But assuming F,(z% | z,, #) is a proper probability distribution for
all # € O, and the dala are a random sample, the ML estimator for the transi-
tion probability is found by maximizing the log-likelihood

~N
Zlf..(ﬂ) (6.12)

with respect to 8 € ®, where €,(#) is defined in the case where z, has discrete
support as:

. 4

€.(8) = > d., In[Fy(z*1 z,, D). (6.13)

The large sample properties of the ML estimalor are derived in the usual way: it
is consistent. it converges in the square root of the sample size, and its asymp-
totic covariance matrix attains the Cramer~Rao lower bound.* If, however, all
the state variables and choices are observed, then the decision rule is fully deter-
mined from knowledge about the true parameter values. Thus by a similar argu-
ment to above. one could deduce the agent’s decisions (exactly) from a small
number of observations, subject to the all-important caveat that the model is
correctly specificd.

To avoid such stochastic singularities, researchers introduce unobserved state
variables into their formulations. For exposition purposes, let us now assume
that the transition law F,(- | z,) is known, perhaps because it is deterministic or
has already been estimated, and that an unobserved slate variable enters the
model. This pragmatic treatment of unobserved variables, namely introducing
unobserved variables to apply the formalisms of statistical inference, contrasts
with the more idealistic notion that the chief virtue of a structural model is that
it represents the true model.” Here the objective appears more modest: to pre-
sent micro data in a parsimonious way, so that the parameters have a clean
interpretation within economics, and that no hypothesis tests derived from Lhe
model are rejected by the data?
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In this spirit of emptiricism, partition the state variable for observation n into
its observed and unobserved components. Thus z, = (x,, £,), where x, is
observed and ¢, is unobserved. The decision rule characterized in section 2 can
then be expressed as d{x,, &,, 8,) for some unknown 6, € ©, and the probability
that the econometrician observes n € |1,..., N} laking action k € [0, ..., K] is:

Pr'dk(xnr Env e[l) = l ‘I,,I = jdl(xm Enr ﬁ,)dG(s,, l Iﬂ, 9")' (6‘14)

where G(«, | x,, 8,) is the probability distribution for £, conditional on x,. Given
computationally traclable methods of computing d{x,, «,. 8) and G(¢, | x,, 6) for
each sample pointn & (1, ..., N} and 8 € @, from (6.13) the ML estimator for
&, maximizes (6.12) with € (6) now defined as:

X
€.(6) = > d,,In{ld,(x,, &, 0)dG(c, | x,. B)). (6.15)

b=

The estimator has the same desirable asymptotic properties mentioned above.

3.3 An Example

To illustrate the principle of ML estimation in dynamic models of discrete
choice, consider the following job maiching model (Jovanovic, 1979; Miller,
1984; Flinn, 1986; Keane and Wolpin, 1994a; Flyer, 1995). In period 1 a worker
receives compensation from her current job, denoted A, which is the sum of two
terms, a fixed component £, called the value of a job match which only changes
with job turnover, and a fransitory component n, which is common across
matches:

A= €4, (6.16)

Each period she chooses between 1aking a new job and remaining in her current
position. ! the agent knows the value of job matches without gaining any spe-
cific experience, then she accepts a new job wilh fixed component denoted £* if
and only if £ exceeds the value of the current job maich & In that case the
dynamic features of the problem are trivial.

But suppose she sees neither the transitory component n, nor the value of a
job match & and only A, is revealed at the end of period 1 to the worker. 1t is
assumed that £* is drawn from a normal distrihution with mean y and variance
5!, and also that n, is an identically and independently distributed normal ran-
dom variable over ¢ with mean 0 and variance o. In this case the agent has an
extra reason for sampling a new job (apart from current compensation): 10
acquire information aboul the value of her joh maich. By changing the features
of the information structure, a trivial problem hecomes quite challenging.

The state variables for the (harder) prohlem are the posterior beliefs of Lhe
job the person worked in fast period. Let y, denote the posterior mean of the
agent’s posterior disiribution for the current job malch at time ¢, and 87 its vari-
ance. Appealing to Bayes' rufe, it follows that the agenl updates her prior
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beliefs each period as she receives the return A, from her current match. More
specifically, let d, = 0 il the worker takes a new job in period ¢, with d, = 1 other-
wise, Defining the information factor a, = 87 as a noise lo information ratio,
v, and a, follow the Markov process

Y = dr(ar“ + Ar)”(ﬂl + l) + (l - dr)(ﬂo?‘o + Ar‘)f(al'.l + l) (6'17)
a,, =dla,+ 1)+ (1 —d)a, + 1), (6.18)

where A* is the first period’s return in a new job.® This is a stationary Markov
problem. In terms of section 2 notation, the vector of state variables reduces to
2, = (, a,). Following the notational convention adopted in (6.5), current utility
expccted al the beginning of the period as a function of choice can be expressed
as uy(z) = v and u,(z) = ¥, Continuing in this manner, let v,(y, a,) be the con-
ditional valuation function for remaining on the current job with characteristics
(7. 8,) for one more period (and behaving optimally thereafter):'

vt(rr' ﬂl) =" + E[ z ﬁ’[d‘;)'; + (l - d‘:)yl!l ! Yo O dl = l] - (6'19)
r=t+1

When the agent takes a new job, she confronts her initial conditions again. As is

true for all stationary renewal problems (of which this is an example), the condi-

tional valuation function for 4, = O simplifies 10 a constant, here v, = v (y,, a,);

and d7, the optimal decision rule, is defined by the recursion :

, Lt viy.a)oy,
= [ 0 il vy, a)=v, (6.20)
Therefore the valuation function is:
V()’r, ur) = max!vl()’n al)' vll]' (621)

Turning now to the estimation aspects, suppose there are data on job turnover,
but not returns (which might have a nonpecuniary component). More specifi-
cafly the daia consist of M observations on job matches from an economy
described by (8, v, 8, o), in which r(n), the length of the match, is recorded
along with an indicator variable, d,, saying whether the match has ended, in
which case d, = 0, or not {d, = 1). Because A, is unobserved, only (o, B), rather
than the fourwple (B, ¥, 8, o), is identified (Miller, 1984). Let g.(a,, B) denote
the probability that a job match ends after r periods. Then the probability that a
spell remains incomplete after p periods is [1 — 27, ,q,(a,. B)]. Define
8, = (ay, B). Then the ML estimator is found by maximizing (6.12) with respect

to 0. where:
rin)

£(6)=4d,In [1 - Z}q,(ﬂ. ﬁ)] + (1 —d,)In{g,.(a B} (6.22)

In principle it is straightforward to extend this ML estimator to heterogeneous
poputations. If the helerogeneity is attributable to a veclor of observed
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variables x,, then o and 8 could be parameterized by known functions a(x,, 8)
and f(x,, 8), and subslituted into (6.22) for the maximization of (6.12) over
8 € O. I differences throughout the population are unobserved, then these
must be integrated out. Let H(e, 6,) be the probability distribution for «,, an
unobserved random variable. Then the probability of observing a match severed
at T periods is:

q.(6) = lg{al(e, 8). B(e. 6), 8)dH (e, 6). 6.23)

Substituting g.,(8) for g,{a, B) in (6.22) and maximizing over 8, the ML estimator
is obtained lor this case too.

This example demonstrales that many phenomena econometricians
encounter in other estimation contexis also arise in the estimation of structural
dynamic models. Right censoring (due to the fact that current spells are incom-
plete), choice based samptle selection (which occurs only because job matches
wilth better histories survive), controlling for observables {to deal with the
effects of education on the information factor), and integrating out random
effects (because not all the differences among agents are observed) are familiar
terms to researchers working with cross-sectiona! data sets.

4 Computation

There is one further feature that applications of ML to structural dynamic
models share with many other nonlinear ML estimation environments, namely
the high cost of implementation. The computational burden of obtaining esti-
mates for the job matching model comes from two sources. First is the problem
of computing the value function many times (as the estimation program tries
out different values of the unknown parameters within the likelihood (unction).
The second source of the computational burden comes from the numerous inte-
grations required to implement the ML estimator when unobserved state vari-
ables exhibil time dependence. For example one of the state variables in the job
matching mode! not usually recorded in the data, a person’s beliel about the
current job match, evolves as a martingale. This section briefly reviews algo-
rithms used to eompulte the estimator, and the attempts to surmount its perplex-
ing computational aspects.

For two reasons this chapter does not explicilly deal with ML estimators for
fully solved eontinuous choice dynamic models. First, notwithstanding promis-
ing recent work on estimating continuous choice models using full solution
methods (Miranda and Rui, 1996), the vast majority of dynamic continuous
choice models are estimated (rom restrictions on the data implied by the first-
order conditions, rather than the value function itself. Second, much of the
analysis undertaken here for discrete models also directly applies to continuous
models; indeed one method for handling a continuous choice model is to first
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4.1 Integration and Simulation

Multiple integration within the likelihood function, to account for serial correla-
lion in unobserved parts of the state variable, is not unique to choice theoretic
frameworks, but shared with many limited dependent variable estimation set-
lings where dynamics are important (Heckman, 1981a; 1981b). To illustrate the
problem in a dynamic programming context, let us reconsider the job matching
model discussed in the previous section. Let G{y! o) denote the probability dis-
tribution for vy across the population of workers whose information [actor about
their current job match is a. As tenure increases, the population of job matches
is winnowed by Bayesian updating and selection. Since everybody of a given
type starts with common prior beliefs about their suitability to a new job match,
G(v! ap) is a degenerate distribution with a single mass point at 5, With one
draw from a period’s experience on the job, the population distribution of mean
beliefs fans out. Those people who receive the worst draws quit at once, thus
truncating the dispersed distribution from below; the remainder survive with
their updated beliefs to take at least one more draw and an extra period’s job
experience. Thus G(y!| a, + 1) is truncated below at the reservation mean belief
for quitting after one period, and is continucusly distributed over the real line
above the truncation point. This process is repeated indefinitely.

The value function v(v, a) is increasing in y. Hence, from equation (6.20), a
worker with information factor & quits at the beginning of the period il
v < ¥(a), where ¥{a) is the unique solution 10 v, = v,[$(a). a]. Thus the proba-
bility of quitting the match with tenure r, that is conditional on accumulating 1
period's experience, is G| ¥(a, + ) | a, + 1]. which is called 1the hazard rate. The
unconditional probability of a job match lasting cxactly r periods, denoted g,
can be calculated from the hazard rates. It is the product of the probability of
surviving = periods. [172]{1 — G[¥(a, + s} | a, + s]}. and the hazard from quit- -
ting at that point, G{¥(a, + 7) | &, + 7):

-1
9.= Gl#(ay + Do+ B[] 11 - Glay, + 1o, +sll.  (6.29)
s=]
Consider the steps required to solve G(y) ) numerically. As mentioned in the
previous section, only the information and discount faciors (a,. B8) are identified.
So without loss of generality y, may be set to 0 and o o 1. Since G(yla, + 1) is
just the probability that y, < v. it immediately {ollows from the Bayes updating
rule (6.17) that y, = A/(a, + 1). Using (6.16) Lo substitule out A;;

Glyle, + 1) = PT(f + nMa, + 1) < 7l (6.25)

Because the match parameter £ is initially distributed as a normal random vari-
able with mean 0 and variance o, ', while 7, is an independent standard normal
random variable, workers with tenure of onc period view (¢ + n)i{a, + 1) a5 a
normal random variable with mean 0 and variance [e(a, + 1}] . Therefore:

Glyla, + 1) = OyV(a,(a, + 1))] {6.26)
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and M ¥(a, + 1)V (ala, + 1))] is the hazard rate for workers quitting alter one
period. Clearly G(y | a, + 1) can be found by calling standard routines for the
normal cumulative distribution function,

Those with tenure > 1 update y,to v,,, using (6.17), but now the integration
is not only over the probability distribution for 7, but also over y,. Denoting
@, + 7by a and using the same reasoning as above:

G('YI o+ 1) = Pr!‘thl < T'dr*l = 1'
=Pri(ay, + £+ n)Ha+ 1) <yl d,,, = 1), (6.27)

where the conditioning slatement on the right side of (6.27) is explicit about
considering only those matches that last more than r periods. Integrating over
job matches with y, who meet this survival criterion:

Glyla + 1) = E{¢|(y - v,)V(ala + 1}]}
~h- Gw(a)lan'[] oy = )V (alor + DG, ).

(o)
(6.28)

Substituting the normal probability density associated with (6.26) into (6.28) to
determine G{¥{a, + 2) 1 a, + 2), it is clear that the integration must be under-
taken numerically. Similarly the probability density for G(¥ | a, + 2) can only
be computed using numerical methods. Continuing in this manner, the algo-
rithm recursively determines Gly(a, + 1) | a,+ 7] for any finite length -
sequence as required by {6.24), the approximation error accumulating with the
length of the sequence." Naturally the whole procedure must be executed on
each candidate 8 € © when maximizing the log-likelihood (6.22).

Rather than numerically integrate over the distribution of unobserved vari-
ables, simulating a supplementary pseudo data set, proportional in size to the
actual one, provides the basis for an alternative estimation strategy. Sample
momenis generated by the simulations (interpreted as artificially generated
data) are equated 1o corresponding sample moments from the real dala by
adjusting the underlying parameicrs lo be estimated. In the job matching exam-
ple, the pseudo data could be generated as follows. Recalling N is the number of
observations, draw, say, six outcomes from the standard normal distribution (il
the aim is to estimale the model from the first five decision periods of job expe-
rience) for each observation, that is 6N random numbers in total, denoted

(£341---. 5 for alln E |I ..... N). Given a value for a,. and assuming as before
¥(a) is known, let & s, denote 1he malch parameter £, associated wilh this
simulated maltch, and define A, = a, '",, + £, ,., as the return in the sth period

of tenure. Using (6.17) updale belicls ahoul £,. thus the posterior mean for £,
with one period’s expericnee is (m,s,, + £,}(a, + 1). Il this number is less than
#(a, + 1). then the simulaled malch ends, the event being denoted
d.(a, 8) = 1. Otherwisc the maich survives at least one more period,
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d, (a, B = 0, and another return is drawn. Continuing in this manner, the artifi-

cial variables d,,(ap, B8) € {0, 1] are constructed for s €1, ..., 5,); the vector
function

d,(a. B) = (du(ag, B), ... dus(a, B)) (6.29)
is formed, averaged over n € [1,..., M}, and matched against the corresponding

sample moment from the data. More specifically, set 4,, = 1 if the nth person in
the sample quits with r periods tenure, and set d,, = 0 otherwise. Forming the
vectord, = (d,,, ..., d,)’, a consistent and asymptotically normal estimator for
the unknown true value of 8= {a,, B), denoted 6, € M* X [0, 1], is obtained by
minimizing:

N i N
[N" 2> (d, - d"(ﬂ))]AN[N" 2. d, - d.(s))] (6.30)
=l n=t
with respect to # &€ * x [0, 1), where A, converges lo a symmetric matrix of
full rank A.
The asymptotic covariance matrix for the estimator takes the standard form
(D’AD)'D'ALA'D(D’AD)"", where:

T = El(d, - d(8))d, — d\(6))')

[ 3q.(6,) ] (6.31)

and ¢,(8,) is the probability of the sampled person quilting when they are
observed 1o leave in the data (McFadden, 1989; Pakes and Pollard, 1989).
However the proofs of consistency and asymptotic normality are complicated by
the fact that the criterion function (6.30) is not continuous in the parameters: as
0 = {ay,, B) varies a little, each indicator function 4, {a,. 8) remains the same or
switches to its alternative value. Intuitively, the discontinuity induced by the
contribution of each observation diminishes in importance as the sample size
grows, in an analogous way Lo the graph of the cumulative relative frequency of
any real value random variable with a well defined probability density, a step
function, converging to ils smooth underlying probability distribution function.
Rather than draw only one set of random numbers (&,,, ..., &,,) {or each obser-
vation n € {1, ..., N} in the data, a total of R sets could be drawn, labeled
(e ..., elh, [rom which a sequence of R durations for each artificial observa-
tion n € {1, ..., N} could be generaled using the same procedure as above. 1n
this case d,,(a". 13) would be defined as:

R R

d (o, B)' = (R-' S dian B).... RS d§ay, p)) (632)
e r=1

The advaniage of simulating more than a single hypothetical job match duration

per observation is asymptotic efficiency; X, and hence the covariance malrix,.

adjusts by a factor of (1 + R™'). By the law of large numbers, 4 (a, B)
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converges to ¢ {ay,, B) lor each {a,, B) as R increases indefinitely, thus illustrat-
ing how Monte Carlo simulation could be used to undertake the required
numerical integrations.

Alhough the asympiotic distribution is hardly affected by this clever device
for large but finite R, lwo cautionary remarks are offered; both question how
well the asymptolic correction in the standard errors reflects the errors gener-
aled by the simulation procedure. The first is that the sample size required for
the finite distribution to approximate its asymplotic counterpart may be quite
large. Second, the larger RN (from increasing the number of simulations per
observation or increasing the data set), the more difficult it seems to be to gen-
erate longer sequences of random numbers to serve as hypothetical. After all,
these numbers are not randomly generated, bul come from computer generated
outcomes of a deterministic process."

4.2 Solving the Value Function

Integrating over future paths is only one of the computational problems con-
fronted by researchers estimating dynamic models with ML. A second issue is
how to compute the value function itsell. When the likelihood is differentiable,
the effect of small changes in the paramelers can be well approximated by
derivative hased methods, which reduces the compulational burden as in any
nonlinear oplimization problem. Nevertheless, this still leaves many evaluations
to be undertaken by directly calculating the value function at many different
parameter values within the likelihood at each sei of state variables observed in
the sample, a very costly undertaking for models with moderately large state
spaces and several parameters to estimate.

Perhaps the most natural way to look at finite horizon dynamic programming
is from Bellman's (1957) perspective of backwards induction mentioned in sec-
tion 2, and many microeconometric applications use this method (such as
Wolpin, 1984). Continuing the job matching example, and as before normalizing
with y, = 0 and o = 1, suppose the problem has a finite horizon T, and consider
the choice facing a worker entering the last period with state variables (y,, a;).
Her value function in period T is simply v (v, a;} = max|y,, 0. Taking the
expeclation of v, (v, a;} one period before when her state variables are (y, a)
yields:

gr (7. @)= Elvi{yr, a7) 1 y. 0]
Elmax{(ay + A, M(a +1),0]] -
y= y¥-Wla(l +a)] +[all + )" [ cde),

- yViall ¢ u))

i

(6.33)

where @) denotes the cumulative distribution funclion for a standard normal
random variable. The third line in {6.33) is derived as follows. Using the argu-
ments preceding equation {6.30). the probability thal the person will quit at the
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beginning of the next period is ${—yV/(a(1 + a))). in which case her expected
return next period is 0. Should she remain with her current match, which occurs
with probability 1 — @{—yV(a(1 + a})], her expected return as of the begin-
ning of the next period is y plus the expected change in this random variable:

1= S~Viall + )Via + ) [ wdd@) (630

= Via(l+a))

Collecting terms, the bottom line in (6.33) is obtained.

Having calculated g,_,(y, a), at the beginning of period 7 — 1 the person
chooses the maximum of starting a new job, and continuing with the current
one:

vro(y, a) = max|y + Bgr_ (v, a), Bgr (0, ay)). (6.35)

Now taking the expectation of the expected value of v,_,(y, @) with respect to
(v, a) conditional on the state variables (yy_;, ay_,) at date T — 2, the expected
valuation function gr.o{¥r., @r_,) is oblained. By successively solving for the
functions g,_,(y, «) through g,(y, a), the value function v(y, &) is derived
numerically for alt r€ [0, ..., T). It is easy 1o see from this description that
numerical error accumulates with each iteration.

The contraction mapping theorem extends the idea of iterating on the value
function to infinite horizon settings, and thus provides a numerical algorithm for
solving them (as applied by Miller, 1984 and others). The contraction mapping
theorem is based on the idea that if the next period’s expected utility is bounded
(with arbitrarily high probability) and the discount rate is strictly less than one,
then the amount of utility lost from ignoring distant events altogether is less
than the sum of the tail of a geometric series.” Turning to the job matching
example. let i, (y, ) be any real value bounded continuous function defined on
the coordinates (v, a) and define the real valued mapping C[#{y. a)] as:

Cl[h(y. 2)) = Elmax{y + &V(e(l + a))
+ fh(y + eN(a(l + a)), a + 1), BA(0, a)]]. (6.36)

where the integration is over ¢, a standard normal random variable. From the
reasoning used to justify equation (6.35), C{(-) recursively links successive
expected value functions in the finite horizon problem with gy, a)
= C[g,_.(y. a)]. Mappings such as C(-) meeting the conditons of the theorem
are called contractions, and salisfy the fixed point property that a unique g{y, a)
solves g(y. a) = Clg(y, a)]. In this case g(y. a) is interpreled as the expected
value function for the infinite horizon problem:

g(y. @) = E[v(y + eV(a(l + a)).a + 1)1y, a]. 6.37)

A corollary to the contraction mapping theorem gives an upper bound to the
distance between the value function and an iterate in the sequence of approxi-
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mating functions induced by C(-). In particular for any initial hy(v, @), the
normed distance between C'lhy(y, a)] and g(y, a) is less than the normed dis-
tance between the successive iterates C'[h (v, a)] and C'*'[h (¥, a}] scaled up by
the factor (1 — B)~'. Notice that in contrast to the recursion used to numerically
derive G(y | a), and in contrast 1o finite horizon value functions discussed
above, numerical errors do not accumulate when the contraction mapping is
used in an infinite horizon problem because the approximation error only
depends on the final two iterates. Although convergence is global, an intelligent
choice of the initial function h,(y. ) reduces the number of iterations required
to achieve convergence. One such choice might be:

hly. e} = (1 — Bgr_(y. a), (6.38)

which is the discounted lifetime utility of updating the current match for one
more period and then choosing the maximum of starting a new maich every
period versus never leaving the current maich.

An alternative to value [unction iteration is policy function iteration {which
Rust, 1987 used). Like value function iteration but unlike the fnite horizon
case, the numerical errors do not accumulate. Under the policy ieration
alogrithm an initial rule is picked, say d,(y. ). The infinite lifetime expected
value of applying this rule, dcnoted w (7, a}, is then calculated as:

wi(y. a) = E[Z Bd(y. a)A Iy, a]. (6.39)

=)

and d,{v. ) as the implicit solution to Clw (v, a}]. maximizing:
Eiy + eV(a(l + a)) + pw iy + e/V(all + a)). a + 1), Bw (0, a,) | v, al.
(6.40)

The infinite lifetime expected value wy(y, a} is calculated under dy(y, a), and so
forth. Since w,(y, ) is, by inspeclion, increasing in k, bounded above by the
unique fixed point gy, o) = Clg(y. a)|. it follows that the w, (¥, a) sequence
converpes to g(y. a).

A policy function iteration entails substanlially more work than the maxi-
mization step (6.35) which defines a value funclion iteration. The additional step
(6.39) is computationally demanding unless the state space for the problem is
finite and small, The benefit from taking the solulion step within each value
function iteration is that convergence is achieved in fewer overall iterations.
Intuitively cach value iteration tacks one period to the horizon on the front of
the agent’s lifetime problem, and does not update the rules that are used in
future periods; consequently decisions in the finite horizon program remain
time dependent. In contrast policy iteration fixes the length of the horizon at
infinity, and exploits the feature that the optimal decision rule is stationary, by
restricting the algorithm 1o search over a class of stationary rules.
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43 Approximating Optimality

Because of the computational expense involved, several studies in the micro-
econometric literature on discrete choice retreat from the goal of numerically
solving the valuation function, giving up the seamless connection between eco-
nomic theory and statistical inference for a parsimonious approximation of the
value function. [n principle both methods briefly reviewed here could be made as
accurate as desired (choosing a sufficiently high dimensional subspace, only
exchanging the integration and maximization operators at a sufficiently small
number of nodes). More generally a secondary use of any reasonable approximat-
ing rule in an infinite horizon problem is to provide a useful initial starting point,
1o which value function contractions and/or policy iterations can be applied.

Rather than solve for the optimal decision rules, one could assume agents
themselves choose rules from a smaller supspace. For example, suppose agents
pick index rules which are linear in the state space (Hotz and Miller, 1988). This
gives the estimation problem a standard index formulation, and thus dodges the
issue of solving for the value function. In the job matching example, one would
replace (6.20) with:

0 it 8+ 6y + 80,50
d,=[ b+ Oy + bya > (6.41)

1 il 8+ 8y + 6, =<0
Since 4 is (siepwise) increasing in ¥, and decreasing in a,, one would expect an
estimate of 6, to be posilive, and a negative estimate of 8. While this greatly
simplifies the estimation problem, the seamless iransition from theory to data of
a fully structura! model is losi. In addition the misspecification induced by using
a linear functional form (or more generally a parsimoniously specified nonlinear
function) rather than the nonlinear mapping derived from the theory.
¥o — ¥i( 7. &), induces a misspecification error: how serious this is presumably
depuznds on the specifics of the application.

Another approximation which has been used in stopping problems (such as
retirement from the workflorce) is to exchange the order of the expectation and
maximization operators, and thus redefine the agent’s problem {Stock and Wise,
1990). Continuing the joh matching model, let v} denote the value of beginning
a new job when this new rule is substiluted for the optimal one. Rather than
computing the lifetime value of staying on the job one more period and behav-
ing optimally. each period the agent simply compares the expecied value of
staying on the current job forever, /(1 — ), with the value of quitting now, v§.
So instead of (6.20} she sets:

" _[0 it %> (1 - pws
L oy =1 - e,
Notice this rule delivers a higher expected lifetime wtility than taking the first

job and never switching, because the agent is more likely to move when maiches
are bad than good. Thus v} > 0. But comparing d* with 4 using {6.20) and

(6.42)
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{6.42), clearly v} <v, so the value from switching jobs is less under d*,
However, ¥, < v(y,. 8,) too; under 4?* the agent does not recognize the option
value of retaining the current match now with a view to possibly breaking it in
the future. Finally note that (6.42) is a special case of (6.41) which imposes the
restrictions that 8, = (8 — 1}, 6,=1,and 6, = 0.

Finally, researchers are experimenting with the simultaneous use of several
approximation lechniques to obtain almost optimal rules at substantially
redueed costs (Wolpin, 1992; Keane and Wolpin, 1994a). Intelligently chosen
approximale value functions that pertain to nodes several periods after the cur-
rent deeision is made, interpolating the value function from a relatively small
number of points in the state space (rather than attempting to compute the opti-
mal rule on the whole siate space), exchanging the expectation and maximiza-
tion operators at judiciously chosen nodes, are three examples of the tools
available. The basic thrust of this endeavor is lo complement computational
power with human cunning when hunting for optimal decision rules at a rela-
tively low level of generality. It seems most appealing when, as in stationary infi-
nite horizon models, a bound on the utility loss from using an approximation,
versus the optimal rule, is easily derived.

5 Conditional Choice Probabilities

The previous section discussed how much numerical work is required to com-
pute ML and related estimators. Although one might have thought faster com-
puters would eventually overcome this limitation, paradoxically, advances in
compuler technology may have exacerbated i, by also making available to
empirical workers ever increasing data sets. While preater access to more
detailed and larger dala sets has been a boon to researchers, encouraging them
to analyze richer frameworks, the growth in the size of the data relative 1o the
speed at which computers can solve dynamic programming problems provides
additional motivation for researchers Lo look for aliernative methods of estima-
tion to ML, This section surveys a class of estimators, conditional choice proba-
bility (CCP) estimators, which have recently been developed 1o exploit larger
data sets and economize on computational effori.

CCP estimators have been used to analyze fertility (Hotz and Miller, 1993),
engine replacement (Hotz et al., 1994), stock replenishment (Aguirregabria,
1994), price changes (Slade, 1994), wellare participation (Miller and Sanders,
1996), and learning by doing {Altug and Miller, 1997). The intuition behind
CCP estimation is that for a broad class of dynamic models of discrete choice,
the probability of the econometrician observing a certain choice given the infor-
mation in the data is closely related 1o the value of picking that choice. Rather
than solving the dynamic programming problem direcily, this approach uses
sample frequencies to estimate the choice probabilitics and obtains the expectled
value of making dilferent choices as a mapping of those frequencies. Estimating
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the structural parameters of interest then becomes the second part of a standard
nonlinear two-stage estimation problem. A key feature of the CCP approach is
the representation of the condilional value function as computationally
tractable mapping of the choice probabilities. The basic idea is developed in two
parts, first with a simple example and then with a more general result. This leads
into a discussion of how the representation is applied in different estimation
contexts and the resulting statistical properties.

5.1 Another Example

To illustrate the CCP approach, eonsider the following stopping problem. A
publisher has given a textbook writer a deadline T. To simplify matters we will
assume thal if the deadline is not met, the project will lose all its value.
Otherwise the current utility from submitting the text at time ¢ is 1. Therefore
before T if the writer continues to work on the book he increases its value by
one extra unit, but against this gain is the delay, that is discounting royalties by
B per period. If there were no costs and benefits to consider, then the net mar-
ginal benefit of continuing is B '(a + tIn B), which has a unique root at
I afn 81, and is posilive for all 1 [ess than this crossing peint. In this determinis-
tic world the author continues writing in period = Tifr< | a/ln B! — 1 and
certainly submits his manuscript once 1>l a/in 8) . Finally ifr <l a/ln Bt <t + 1
he submits at £ or t + 1 depending on whether 8t or 8"*"{t + 1)" is higher.

Now suppose there are also some idiosyncratic factors associated with how
easy it is to work in any given period, called &,,, and unanticipated tite costs of
dealing with his publisher, called g,,. It is further assumed that g, and ¢,, are
both independent and identically distributed random variables drawn from the
1ype 1 extreme value probability distribution.” In terms of the notation devel-
oped in section 2, the stale veclor is z, = (&, &), the utility received in periods
before submitting the manuscript for publication is u,(z,) = f's,,, while the util-
ity from publishing on date 1 is u,(z,) = B'(t° + &,,). These random factors com-
plicate the author’s decision making because, other faclors aside, he would.
prefer to submit when B8'(g,, — ¢,,) is high; there is a search aspect 1o consider.

The conditional value function for submitling his manuscript, denoted by set-
ting d, =0, is v, = B'1". while the conditional vatue function for continuing to
work at least one more period after (, or setting d, = 1, is:

Vi, = EI".H(EH. re1e 5|.r+|)]- (6.43)

In a similar vein, p,,. the conditional choice probabilities for 4, are defined as
Pi = Eld, = k' 1] for the two actions k € {0, 1}. Given the distributional assump-
tions, the conditional choice probability of choosing to extend the pestation
phase one more period is [1 + exp(v,, — v,,)] ', while the analogous expression
for p,, simply exchanges the subscripis in this expression.'* Taking the quotient
and then the natural logarithm yields:

Inp,, —In Po: = Vi~ Ve (6.44)
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This inversion result, generalized below, represents dilferences in the condi-
tional value functions as a mapping from the conditional choice probabilities.
From (6.44) it is easy o see that p,, exceeds half if and only if v,, exceeds v,,.
This is because v,, — v, represents the difference between the valuations of the
options without taking account of the unobserved symmetrically distributed
random variable g,, — &,

Some further algebra eslablishes that the expectation of g, conditional on
action k € [0, 1] also has a simple form:

Elgd =k]={—Inp,, (6.45)

where { =0.577 is Euler's constant. The qualitative properties of this dynamic
selection correction term are quite intuitive. From (6.44) the higher the dil-
ference v, — v,, the larger is p,,. and therefore the threshold value of &, — &,
10 induce the writer 1o continue working is lower, the expectation converging to
its unconditional counterpart of { at p,, = 1. This implies the conditional expec-
tation of &, is declining in p,,. The conditional value function for working on the
manuscript another period is thus:

Vie = P, il Bl 1 dy =0l + v | +p wilEle, ) d, = 1] + Vil

=p|i.nlﬂ”(r + l)u +P| LAY + EH({_ ‘Z;pl ] 'n oy nl)

= ﬂ”(’ + l)u +Pl_|‘|(ln pl‘ul —In Pu rol) + ﬂ«l({ - Zpt.ul Inpl.nl)'

=it
(6.46)

The second line uses lorwards induction to exploit the new representation by
substituting in equation (6.44). Interpteting the bottom line of equation (6.46),
the first expression, 8'''(r + 1)*, is the present value ol submitting in period
t+1, net of the unobserved component. The final expression,
(£ = Zi.oPi o In P, ,.1), captures the expecled value of the unobservables. The
middle term, p, ,., — In p, .\ is just v, ., = v, .\, bul weighted to account for
the possibility that with probability p, ,,, it is optimal to continue writing for
more than one period longer.

There are two structural parameters of inlerest, the subjective discount rate
and the concavity parameter a. The econometric [ramework combines (6.43),
(6.44), and (6.46) to obtain:

I

P I+ (X feur
In Pu =g+ 1)+ o 1n Ipl. pll +8 '(gﬁ Zp""" Inp, ,,l)— B
e

P (LN (647)

The details of estimation are deferred to later: suffice it 1o remark here that
equation (6.47) links together observed variables, that is ¢, and casily estimated
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probabilities (pq, py, ,,,) with the parameters characterizing the structural frame-
work 8= (a, 8).

5.2 A Representation Theorem

The illustration can be extended to a large class of dynamic programming prob-
lems. Returning to the discrete choice problem considered in section 2, we now
impose an additional assumption which restricts the role of unobserved vari-
ables in the analysis:

Prix,,p. &4 | 3, 5, d) = Prle,, L, |Prlx | x, d). {6.48)

This assumption, introduced to the ML literature by Rust {1987) and widely
used, is also key o the CCP estimation strategy. There are essentially two parts
to it. Conditional on x,, the unobserved variables &, are independent of their past
values:

Prlgﬂ-l IIHI! xl! Eﬂ drl = PTI&',H iIH'I' (649)

The second part of the assumption resiticts the law of motion of the observed

variables. The only way the unobserved variable might affect outcomes is
through the choices agents make:

PTII.H IIr- & dl} = PI'I.I,” ! Xp d:" (650)

Admitiedly. assumption (6.48) is quite restrictive. For example it is violaled in
the job matching model discussed in section 3, because one of the state unob-
served variables, subjective beliefs aboul the mean of the distribution for the
job match. is autocorrelated.

As the publishing example demonstrated, the conditional choice probabilities
play an important role because ol their relationship 1o the conditional value
functions. In this more general setting, the conditional value function for aclion
k€ |0,...,K)isdefined as:

vikx) = u,(x) + Efv(z,,)1x, 4, = 1] (6.51)

and the conditional choice probability is:

X
Pulx,)=Prld,, = llx]} = Pr[fjl.s',r = g, v, (x) — v, ()] lx,] .
=
' (6.52)
Drop the  subscript from x,, wriling:
po=pix)={py(x).....0x}Y = (py.-...P,) (6.53)

for the vector of condilional choice probabilities, and let ¢, = ;(x) denote the
difference in the conditional value functions from any benchmark value func-
tion. say v,(x), so that:

.\t'” = w;r(x) = V’,(X) - V“(I)- (654)



274  Robert A. Miller

Equation (6.52) may now be expressed as:

Pu = l Glf(‘ s By + 'kh - Ih,,_ v Eqer By + 'ﬁtl - '1!'&41.!“' 1-x)d‘f"lr- (6'55)

where G, {&y. --. . Ex 1 x) = 3G(&,. ..., £x, ) x)3E,, is the derivative with respect
to g, of G(&,. ..., £x 1 x;), the joint probability distribution function for the
unobserved variables (g, ..., £,) conditional on the observed variables x,.
Given any x, suppose for a moment that the K-dimensional vector p, is known,
but that the K-dimensional vector ¢, is unknown. Then ¢, could be solved at x if
a unique solution existed for the K equations (6.55). Equation {6.44) proves, by
construction, lhe existence of a unique solution in the publishing example
described above. More generally, a representation theorem proved in Hotz and
Miller (1993) establishes (6.55) is indeed invertible in y;: for each x there exists a
unique vector i, which solves the K equations.

This theorem also paves the way for expressing the expected values of the
unobserved variables, which are drawn [rom a sample that is subject to choice
based censoring. To see this, let O, {p,. x) denote the inverse function of (6.55),
implying ¢,(x) = Q,(p,. x). Then the expected value of g, conditional on choice
k and observed state x is:

w,(p,. x) = Elg, I x,d, = 1]

= I E.IJGM(' coa Ege + Q.I.J(pux) - Qk-l r(P.-I)v Ejre €y

+ Qulp.x) = Qi (p.x). . 1 )dg, (6.56)

Knowing he will behave optimally, the utility an ageni expects to receive in a
future period if the observed part of the siate x occurs is therefore:

Z o (D)1, (x) + w,, (p,. ). (6.57)

5.3 Applying the Representation Theorem

In principle one could sum probability weighted utilities obtained from (6.57)
over periods and states Lo obiain an approximation for the value function. Usmg
this procedure in estimation would yield considerable savings in computation
time relative to ML, because the sample probabilities could be directly used as
weights, rather than having to solve for the optimal decision rule as a function
of the underlying parameters and the state variables. However when the
dynamic programming problem has a special structure, it can be further
exploited to reduce the computational burden. To date three classes of prob-
lems have been discovered: problems with terminating actions, problems with
finite dependence, and stationary Markov problems.
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The first special case we examine occurs when there exists an action, called a
terminating action, that ends the decision making phase (Hotz and Miller,
1993). Suppose action zero is a lerminating action (as in the publishing exam-
ple). Having taken the terminating action once, the agent is compelled to live
with repeating that action for the rest of his life. In this case:

T i .
val(x) = uelx) + Z up, (x,) + q,,lx] ' (6.58)

i=t+l

which may be calculated directly (as a function of some structural parameters to
be estimated). Therefore, by the representation theorem all the other value
functions can be calculaled as:

r
v (x) = Q) (x) + uy(x) + Z Uy, (x,) + s,,,lx] . {6.59)
=r+l
Another case which lurther reduces the computational demands of estimation
occurs when the slale variables only exhibit finite time dependence (Altug and
Miller. 1997). To exploit the finite dependence property in applying the repre-
sentation theorem, the folowing notation is handy. First the transpose of the
state, z;= (x, &), is parntitioned into previous choices that enter it,
(d,_,.....d; ). a vector of observed, strictly exogenous variables denoted y;,
and the unobserved variables entering the state &. Thus x; = (y,. d;_, ..., d]_).
the integer p indicating the length of dependence. Imagine calculating v, (x,) in
the following manner. The agent sums up the utility from taking action k
this period, and action 0 in the next p periods, behaving optimally [rom tben
on, and finally adding a correction factor to account for her nonoptimal
actions in periods r + 1 through ¢ + p. Accordingly, let z; ,,, denote the state
variable in period f + s associated with this action sequence, and x} ., its
observed part. By inspection 2§%,,., = (¥/,,01. 0. ... . 0, &, ,,) is strictly exoge-
nous. and therefore does not depend on k. This action sequence and subsequent
behavior generates a remaining lifetime wtility of v,, . (2}, ) from period
t+ p+ L. and the utility received during a lypical period s € {1....1 + p} in the
meantime is u,, (x} ,.J + &, Finally the expecled loss, based on information at
period ¢ from taking action 0 in period s € [t + 1, ... ¢ + p| instead of the opti-
mal one, is:

B 5 5 N0, 55,55 + o 5. (5.00
s=t+1 g=it

The first group of expressions in {6.60), comprising the p, (x},70,(p,(x}\), x},)
terms. is attributable to taking the benchmark action (rather than the opumal
one at 5) as they affect utility through the observed state variables, while the
terms like p, (x};,w, (p,(x3;") xi,") affect utility through the expecied value of
unobserved variables. Combining the various terms we thus obtain:
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vlr(xr) = uh(xl) + EI”.A,u('ﬂ?»,ol)"'r]

+ E[ > e (xi) + Z Pa(x, ‘)[Q,.(P,(Qi;')) + W;.(P.(Xii')-ti.")l'!.}-

sl =0

(6.61)

Slationary Markov problems whose observed characteristics come from a finite
set also have a special structure which can be exploited in estimation to further
reduce the computational burden (Aguirregabria, 1994; Holz et al., 1994; Rust,
1995). Assuming current utility is discounted al a geomelric rate over time,
u,(z) simplifies to Flu,(x) + g, and (6.5) reduces to:

- &
E[Z z d Bl {x) + g, )1 Zn] - (6.62)
t=0 k=0

Defining the observed part of the siate space by the set {x!", ..., V) for some
positive integer L, the objects of the problem can be expressed more concisely
by writing the observed parts of current utility as #{” rather than u(x"), the
unobserved parts as w' instead of w{p(x"), "), the conditional value func-
tions as v} not v(x"), "the conditional probahlhues as pi not p(x'"), and the
conditional transition probabilities as FU"? rather than F{x™ 1 x). Therefore the
probability of transiting from x* to x“" denoted by T,n is Ty = Zj_,p"F¥? and
the transition matrix for the obhserved siates is thus defined as:

TII TIL
r=| & ~. i]| (6.63)
Tu Tl,l,

Let i denote the L X t vector of expecied utilities (that is conditional on x'" but
margining over the unobserved variables and the choices):

Tt + wih
= 1 WP L( L 13 (6.64)

ap Ot + wi) [
Defining the L-dimensional row veclor of conditional probability transitions as
Fv=(F, ... F{*)), the condilional value funclions may be expressed in the
new notation as:

v = W+ BFYS BT, {6.65)

<=0
where T is the s-step transition matrix found by multiplying T with itselfl s
limes. As a practical matler, approximating the infinite series with a large finite
number is a useful way of approximating v{" for moderate values of B.
Alternatively, note that the infinite geometric matrix sum, X7, 07", is the
inverse of (1, — BT). where [, is the L x L identily matrix. So whenever the
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inverse of (/, — BT) is cheap to compute, (6.65) can be directly calculated from:
vil = w0 + BRI, - BT)'u. (6.66)

5.4 Estimation

When the optimization problem exhibits one {or more) of these three proper-
ties - terminal states, finite dependence, or a stationary Markov nature — the
conditional value functions can be easily expressed using formulas {6.59), (6.61),
or (6.66). A two-stage procedure can then be used to estimate the structural
parameters. Here we consider the case in which the observed portion of the
state space is finite.'"® First estimates for the choice and transition probabilities
are obtained from the relative frequencies observed in the sample. Then the
structural parameters are estimated by optimizing a criterion function that uses
the results from the first stage.

There are several related ways of constructing a criterion function to under-
take the second stage. As before, the observed part of the state space is labeled
x'"" through x'*). Accordingly, let 8 € @ denole the unknown structural parame-
ters to be estimated, and let P denote the vector of conditional choice probabili-
lies. In the finite horizon model P has dimension LJT because it is arrayed over
the observed states, dates, and choices, while in the stationary Markov model its
dimension is only IJ. We suppose the true value of the incidental and structural
parameters are respectively P, and 8,, and denote by P, the cell estimators
obtained from the first stage of estimation. Denote by v, (x!, 8, P} the condi-
tional value function, using the representation described above, for taking
aclion k at date r when the observed part of the state space is x'". To conduct the
second stage of estimation, a gquasi-log-likelihood function could be formed
from:

{ (&) =In Pr{j = argmax [g,, + v, (x,. 8, Py)] Ix,,] s (6.67)
kEm. .. 4|
where x, comprise the observed characteristics of the nth observation which we
suppose is sampled at r. When the structural parameter estimates have been
computed. the standard errors are calculaled to account for the two-slage esti-
maltion strategy. using the standard correction formula (Newey, 1984).

Minimum distance (M) estimation provides another means of obtaining an
N'? consistent and asymptotically normal estimate of 8, (Chamberlain, 1984).
Applied here. it is based direcily on the equality ¥,(x) = Q{p, x,). Accordingly
define for each § € @ the LJT-dimensional vector (8, P,,) as:

(0. P = (S0P, ... w8, PY. w8, P, ... g8, PL))

(6.68)
in the finite horizon model where:

4’5"(9- P\-) = (V,,(Xm. a, Pn) - "uu(xmc a, PN). ey VJ,(X{”‘ X Pn) - Vn.(x”" a, PN)) °
(6.69)
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Similarly define Q(8, P) as the LJT-dimensional vector in the finite (infinite)
horizon model, its components formed from Q{p,(x"), x*, 8) for each {1, f). (In
the infinite horizon stationary case the dimension of (8, P,) and Q(8, P) is only
LJ and the ¢ subscripts are dropped in (6.68) and (6.69). An MD estimator can
now be defined for 8, by minimizing:

N(Q(8, P,) — (0, PYALQ(S, P,) — #(8, P)) (6.70)

in 8 € B, where A, is any LJ square maltrix converging in probability to some
positive definite weighting matrix A. Let D,=3(Q(8, P,) — ¢(8,, P,))a9
denote the partial derivative vector of (6, P,) — ¢(8,, P,) with respect to 8
evaluated at the true conditional choice probabilities P, and the true values of
the structural parameters 6, and define D, =29(Q(8, P, — (8, P,))oP
similarly as the partial derivative vector for the conditional choice probabilities.
Noting that {VN){(P,, — P,} is asymptotically normal with mean 0 and variance
V (which is block diagonal by state and date), it follows by taking a first-order
Taylor series expansion of the FOC for (6.69) that (VN){(8, — ) is asymptoti-
cally normal with mean 0 and variance (D,AD,)"(D,AD,)V(D,AD})
(P,AD,)y"'. With regards to small sample properties, a Monte Carlo study
undertaken by Hotz et al. (1994) suggests that the CCP estimator exhibils more
finite sample bias than ML when the underlying structural assumptions are cor-
rectly specified, but the loss in asymptotic efficiency is not severe.

This section concludes by briefly revisiling the example which motivated it.
Let 7, denote the amount of time the #th author spends writing his textbook,
and suppose some publishing firms have records on N textbooks, the data sel
comprising a finite sequence |7,|%.,. Empirically implementing this model
involves estimating the particular environment! which generated these daia,
namely &, = (o, B,). For expositional simplicity, suppose there is no unobserved
hetereogeneity apart from the transitory disturbances (s, &,). Thus x =t
Although the conditional choice probabilities are unknown, they can be easily
estimated from their sample frequencies. Accordingly we define P, =

fpih ... pl') as:
M N
P =5 r, = 0 U, =1}, (6.71)
n=1 L&l

where 1{A) is the indicalor function for the statement A. Appealing 1o (6.47),
we now form the vector (8. P,) = (4,(8. P, ..., ¢.{68. P,)) using the cell esti-
mates, with a generic component defined by the expression:

(N) !
(0. P) = B+ 1) +p, I ’;(";," +B" '({ = 2P npl, ) - g,
=0

il
(6.72)

where pi*) =1 — pf’, and proceed wilh the MD estimation strategy described
above.
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6 Time Additive Continuous Choice Models

This section and the following one discuss thé estimation of structural models in
which individuals from the sample make continuous choices. Much recent work
in this area estimates parameters from the first-order condition (FOC) 1o an
optimization problem which is solved within an equilibrium for the population.
Because the FOC is an equality which holds conditional on previous actions and
the current state, orthogonality conditions may be constructed from multiplying
the FOC with predetermined and exogenous variables. If, in addition, the unob-
served parts of the first-order condition are uncorrelated with these predeter-
mined variables and have mean zero, then the produet of the predetermined
variables and the observed parts of the first-order condition also have mean
zero in expectation al the true parameter values. Providing a sample average of
realizations drawn from a cross-section or panel converges to this expectation,
estimators with the standard large sample properties can be found.

The difficulties encountered in estimation revolve around pieking the prede-
termined variables, or instruments, and interpreting the empirical results, These
difficulties stem from three sources. Relative price movements are common
shocks that affect all consumers the same way, and as elaborated below, affect
the scope for choosing instruments, because a sample moment taken over a
cross-section does not have the same asymptotic properties as a sample moment
from time series observations {Chamberlain, 1984). Here the assumption of
complete and competitive markets {CCM) can play a major role in resolving
this issue. but restrictions implied by the weaker permanent income hypothesis
(PIH) are insufficient to identify the model. Nonadditive preferences in
observed variables constitule a second source of complications in estimation,
even when there are no aggregate fluctuations. Serial correlation in unobserved
variables that are specific to the individual also reduces the set of instruments
available for research exploiting panel data (ruling out past choices for exam-
ple): in some parameierizations this can be handled using the usual procedures
of differencing logarithms and so forth, but when preferences are not separable
over time this may be unfeasible.

6.1 Time Separable Preferences

If the agent does not make discrete choices, then equation (6.4) simplifies to:

r
E[ > ulc,z) z,,]. 6.73)
=1

and the k subscript on the right side of equation (6.3), the transition probability
distribution function for the state variable, can be dropped. Put succinctly, the
assumption of time separabilily states that the state variable nexi period does
not depend on the current choice. Thus, when the support for z is continuous:

Priz,,, = zlz.c) = F(zlz). {6.74)
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This does not mean that choices are uncorrelated across periods. For example, if
z, is a time dependent process, and u(c,. z,) is nonseparable in ils lwo arguments,
then optimal behavior induces serial correlation in ¢, Nevertheless an inspec-
tion of (6.73) and (6.74) reveals that the expected lifetime utility gain from con-
suming an extra unit now is calculated without any reference to the future.
Therefore only the cost of marginal consumption can trigger dynamics if prefer-
ences are separable over time.

6.2 The Lifetime Budget Constraint

The most natural generalizalion of perfect foresight models of lifecycle behavior
is the assumption that markels are compelitive and complete (CCM). Here the
word “competitive’ is synonymous with price taking behavior; *complete mar-
kels' means there are no frictions in the markets for loans, a common interest
rate facing borrowers and lenders, and that a rich set of financial securities exists
to hedge against uncertainty. The chiel virtue of assuming CCM is that it incor-
porates uncertainly in a sufficiently simple way to yield a tractable econometric
model, because under CCM aggregate elfecls are fully transmitted through
prices Lo contingent claims {Altug and Miller, 1990).

To formally define the lifctime budget constraint the commodity and price
spaces must be properly specificd. In a standard general equilibrium model all
trades take place at date 0, history only determining the realized path of deliver-
ies and consumptions. Accordingly tet A(z) denote the price measure for the
first good when the datefsiate coordinate pair is (¢, z) and denote by A(z) its
(Radon-Nikodym) derivative. In other words, to consume a unit of this
numéraire good in state z € A at dale f costs:

[EXCLIACIERY (6.75)
LEA
where F,(z | z,) is the probability distribution function for Z at date 1 conditional
only on the initial state z, al datc ¢}, formed from successive convolutions to
{6.74). Also let o{z) = (1, y(z). ..., @, (z)) denote an M-dimensional row vec-
tor of spot prices in each state z, defined in terms of the first good. Under CCM
the houschold must only obey a lifetime budget constraint of the form:

=1
w= E[ ZA,cp,c, | z..]. (6.76)

=0

where w is lifelime wealth. For example if there are only L (finite) states {6.76)
would simplify to:

e F =T L M
E > Aecl z..]E DN IAMFU ZY) = FU = U12)] Y @G| (677)
m=1

=0 - =y

where A, @ [ Fll12,) — FAI — 11 2,}} is the contingent price of consuming a unit
of good m on date 1 if state { occurs, that is the product of the spot price @,
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of the pood at r, and the contingent price of the numeéraire good,
MEF(20) — F(I = 112,)).

Equation (6.76) expresses the budget constraint in an analogous way to a
budget constraint for a static problem (Debreu, 1959). It can also be recast in
recursive fashion (Arrow, 1963). Rather than defining all state contingent claims
on each date for the numéraire good, contingent claims markets are only open
for the next period (and thus depend on the state of the current period). In the
discrete state model this reduces the number of conlingent claims markets from
LT 1o LT. Concerning the price of the one-period security, given (¢, z), let
Afz* 1 z) be the conditional price measure whose Radon-Nikodyn derivative
Afz* | z) satisfies:

J[ | f\.(z'!Z)dF.(Z‘|z)]f\,(z)dF.(z1zu)= | Ai@F (2 20)
IEA * "EA 1"EA (6‘78)

for all A C Z. Intuitively (6.78) states that the date C price of consuming a unit
of the numéraire in states A on date 1 + 1 (lhe right side of the equation) equals
the date 0 cost of [J..c,A(z* | 2)dF,(z* t 2)] securities that have payoffs in each of
the states z C Z at period r, which is then used to finance a unit of the numéraire
in date r + 1 to be received if A C Z occurs. The agent’s problem can now be
written as choosing (¢, w(2*)) = (c(z). w,(2* | 2}) to maximize:

u(c, 2} + vlz*, wrdF(z* i 2) (6.79)
subject to the consiraint that:
w, = Elpc, ¥ A(z* 1 z)w{z* 1z} 12] =0 (6.80)

and the law of motion for w, which is simply w,,, = w(z,,,12,). (In the discrete
case there are just M goods to pick for immediale consumption and L assets 10
choose from.) Recalling the framework of section 2. the staic space for this
reformulation of the problem requires w, 10 be one for the components in the z
vector. With reference to (6.2) there is only one index funclion, namely the lefl
side of (6.80). Therefore the consumer's problem of maximizing (6.73) subject
to (6.76) also fits within the framework that section 2 described.

6.3 Estimation and Testing CCM

To develop some intuition for the restrictions implied by CCM, we first consider
the spot market for two goods, say the first two in the consumption vector.
Assuming an interior solution, and first differencing the FOC obtained by maxi-
mizing (6.73) subject to (6.76), we obtain:

In ‘B“J(cm- zm)’faclmi = 1In {aul(cmv znl)lach:' =In {"Il} =In |'\ln| (681)

after laking the logarithm, where the s subscript now designates one of the
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N people sampled in the data. Equation (6.81) states thal, in equilibrium, the
(logarithm of the) marginal rate of substitution between two goods consumed
simultaneously equals the (logarithm) of Lheir relative prices. Analogous to the
nolational convention developed in section 3, let z,, = (r,,, &,), where x,, is an
observed variable but ¢, is not, and suppose:

In 1aul(cm‘ Zm)"aclur‘ - lﬂ laul(cm' zm)’achll = mlll(cnr' I_,". 60) + slbln (682)

where m,(c,. x.. 6,) is a function of observed variables (c,, x, ). known up to a
parameler vector 6, € @ to be eslimated, and ¢,,,, is formed from &,. If there
are instruments y,, satisfying the condition:

Elslhfyml =0 (6.83)

then conditions (6.82) and (6.83) can be exploited in estimation because
together they imply:
N

0= plim 'l_zyur[mltr(cm'xrrr- ell) - h‘l i“lrl +In IA!r" (684)
n=

Nt

Stack y.[m{c,. X @) = In{A,) + In [A,})] over the periods covered by the panel
1o obtain the vector:

Yulmin(ca. X0, 8) = In{a,) + In {Ay)]
(8= o . (6.85)
Yualmyr(ear .0, 8) — In {A ) + In [A])

A generalized method of moments (GMM) estimator may now be defined by
taking a quadratic form of the sample average of £,(#), and minimizing it with
respect to 8 € @ (Hansen, 1982). Accordingly define 8" as:

N L
_ . f(8y fA9) ]
g = argmm[N[»Zi _:‘_J_:IWN[,; N ] . {6.86)
where W, is a positive definite weighting matrix. Typically a standard two-
round estimation procedure is applied. In the first round the identity matrix
W, = Iis used as the weighting matrix to oblain consistent parameter estimates
6,. and in the second any consistent estimator of the inverse of
T = E[£(8,)/.(8.)']. The resulting estimalor is &' consistent and asymptotically
normal with covariance matrix (D'Y'D)"', where D = E|3f,(8,)/98]. Moreover
if the dimension of £,(8) is greater than the dimension of 8, then, under the null
hypothesis that the model is correctly specified, the minimized criterion funetion
{6.86) converges 10 a chi-square random variable with degrees of freedom equal
to the number of overidentifying restriclions (Gallant and Jorgenson, 1979;
Hansen, 1982}).

Having seen how to estimate the marginal rate of substitution between two
goods consumed at the same time, the exiension (o the case of the same good
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consumed in successive periods is straightforward. Following (6.81), let A
denote the first difference operator and note:

Aln [Bu,(c,,,. Z,,,)faC,,,,l =1In |'\I.HI| = {Alrl' (687)

Thal is, the logarithm of the marginal rate of substitution between consumplion
in two consecutive periods equals the (logarithm) of their relative prices.
Following the spirit of (6.82), write:

A ITI laul(cﬂr' zm)"a‘:lml = mh(‘:n, +h Cm- .I"_ 23 1) L # 00) + slm- (688)

where m, (c,. X, 8;) is a [unciion of observed variables (c,, x,,), known up to a
parameter veclor 8 € @ to be estimated. If there are instruments y,, satisfying
the equality E[&,y,] = 0, then it can be exploited in estimation in practically
the same way as above. There are two differences. When comparing two goods
consumed in the same period, spot prices may be available in the data (or in the
case of the labor market, a measure of the real wage), whereas comparing con-
sumption of the same good in successive periods, the state contingent price is
never observed. (Even in a world of perfect foresight it is not clear how the real
interest rate should be measured.) Whereas values for In [A,,) ~ In [A,). the ratio
of spot prices. could be inserted in (6.85), time dummies (indicator variables
for the period) should be used to estimate the intertemporal condition. The
second difference is attributable to the time additive parameterization itsell,
Since mll(cll =11 Cope X pegn xm- en) comes (l'Om aunl(cn_ulv Ty r+l)lacln‘l4l and
du,(c,,, 2,)/0c .. which have the same functional form, whereas m ;(c,.. x.,. 8,) is
refated 10 du(c,,. 2, }9c,,, and du(c,,, 2,)/d¢c,,. which clearly have different func-
tional forms. more parameters could be identified in one or the other formula-
tion, depending on exactly how u(c,. z,) is specified, or the underlying
identifying assumptions. In particular identifying assumptions stating the con-
lemporaneous nonseparabilities between the components of the consumption
vector and how the x,, enter the respective marginal utility functions determine
which combinations of parameters can be estimated.

While the assumption of competition between consumers seems innocuous,
the notion that markets are complete is much harder to accept at face value. For
example it implies that actuarially fair rates insure all losses to individuals that
are independently distributed across a large population. But appearances can be
deceptive. First, the aggregation rcsults of Rubinstein (1981) show that, apart
(rom personal insurance against idiosyncratic risk, only a small number of mar-
kels are required to exhaust trading opportunities: in a deterministic world just
a one-period interest rate plus spot markets. For the utilily parameterizations
that most researchers focus on (the HARA class), one extra security suffices.
CCM does not add that many restrictions to the data given the parametric
assumptions that researchers are already making in the other parts of their
framework. Moreover tests of CCM are primarily about the existence of spot
markets and resource allocation; Yacking data on food prices, for example, these
tesis do not distinguish between an allocation mechanism due (o markets versus
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a food stamp program. All that empirical workers identify is whether people
equate their marginal rate of subslitution between pairs of commodities at their
respective consumption points.

Apart from testing the overidentifying restrictions, a second way of lesting
the CCM null hypothesis is to add variables that under the nutl have no system-
atic effect. The alternative hypothesis is usually characterized by the statemem
that consumption is excessively volatile. To implement the test let k,, be a vector
of observed variables which do not enter the marginal rate of substitution func-
tion and replace (6.87) with:

A ln [Bu,(c,,,, znl)laclm] = II'I IAI,NII - I" lAll} + ﬂ'h,"- (6'89)

Conducting the same estimation procedure as before, it follows that the nulil
hypothesis would be rejected il the estimate of e differs significantly from 0.
This approach is informative, but should be seen in context. Il A, is correlated
with unobserved variables in the utility function, the estimated coefficient would
be nonzero even if the parameterization is correctly specified and CCM holds.
Tests which ignore such correlations run the risk of falsely rejecting the null
hypothesis.

Several studies following Altug and Miller (1990) have referred to the CCM
assumption as a model of full insurance.'” Focusing narrowly on the insurance
aspects disguises the many other reasons why the framework might be rejected.
None of the tests of full insurance maintain the null hypothesis of CCM in a
vacuum, but simultaneously make assumptions aboul the separability of com-
modities, measurement error, lhe distribution of the unobservables, stationarity
of the series, and ol course the parameterization itself. Thus it is only possible to
rcject all of the maintained hypotheses at once, or alternatively, characterize the
assumptions under which CCM is not rejected. Worse yel, lesting CCM can be
undertaken in a perfect foresight economy, and there is nothing intrinsic 1o
these frameworks Lo suggest thatl uncerlainty is playing any role at all. In a per-
fect foresight model consumers simply maximize:

.
Sule,.z,) (6.90)

subject to:

Ac,<w (6.91)

and a known sequence |z,)7.,. If utility is additive over time, exactly Lhe same set
of first-order condilions {and estimation equations) emerge. Attributing model
misspecification to a breakdown in insurance arrangements, other valid reasons
why (he framework might be misspecified (such as nonseparable preferences,
poorly dcfincd and/or poorly enforced property rights, and so on) are glossed
over,
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7 Relaxing Time Additivity in Continuous Choice Models

There have been several attempts 1o relax the assumption of time additivity
{CCM and separable prelerences), and they may be put into one of three cate-
gories. The mos! straightforward approach is 1o note that this assumption can be
tested within and between baskets of goods and subpopulations: for example,
consumption smoothing across generations but within dynasties (Hayashi,
Altonji, and Kotlikoff, 1996), between inhabitants of the same Indian village
versus people belonging to different villages (Townsend, 1994), and within dif-
[erent regions of a country versus across currency and national borders (Miller
and Sieg, 1997). This approach is discussed first.

It is more ambitious to estimate preference paramelers without making any
assumptions about the trading opportunities agents face, by relying only on the
properlies of lime additive preferences and rationality. Models of the permanent
income hypathesis {FIH), the name under which this approach goes, have an ana-
log in the time series literature, where national consumption aggregates have been
modeled as giving ulility to a representative consumer (Hansen and Singleton,
1982). In contrast 1o the macroeconometrics literature, which appeals 10 the
asymptotic behavior of stationary time series to undertake estimation and hypoth-
esis lesting, empirical studies of the P1H using micro data rely on cross-sectional
averages lo conduct statistical inference. However the fluctuations in aggregate
time series, which are after all the very basis for empirical work in macroecono-
meirics, are, simultanzously, incontrovertible evidence that individuals within the
population experience common shocks. Whereas we have seen that CCM provides
investigators with an analytic tool for dealing with these common shocks in an
internally consistent manner through the insertion of time dummies, the PIH yields
insufficient structure to achieve identification. Unfortunately this stumbling block _
has not prevented the growth of a literature which simply ignores these issues.

After critically reviewing the problems associated with estimating models of
the PIH with micro data, this survey chapter concludes by reviewing a much
smaller number of recent studies on the estimation of preferences that are non-
separable over time. In principle relaxing assumptions about preferences might
seem an easier task than relaxing the CCM assumption, because at least vari-
ables affecting utility, such as leisure and consumption, are observed in panel
data, whereas reliable data on the asset positions of people are typically much
harder to obtain. Nevertheless allowing for aggregate shocks {transmitied
through prices via markets) is quite challenging, and there is clearly room for
further work in designing structural models with parameters that can be identi-
fied with computationally tractable estimators.

7.1  Applying Additivity in a Limited Way

Allthough CCM provides a useful framework [or thinking about the data. like
any null the [ailure to reject it may merely reject poor data. while a rejection
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should be interpreted as a strike against all the assumptions that bolster the
framework, inctuding those that are entirely unrelated to questions of market
structure. Faced with this weak way of interpreting the evidence, a natural direc-
tion for future research is to relax CCM by explicitly modeling the rationale for
incomplete markets, or relax the strong separability assumptions about prefer-
ences that underpin {6.87). However, tests of additivily can at least be adapted to
particular markets, or specific populations. From (6.86) it is clear that only mar-
kets for which data exist are being tested; consequenily this test has no power
against eommodities that are not traded." Another way of estimating a more lim-
ited set of eomplete markets is Lo assume the gains from trade are only exhausted
within a subpopulation, rather than over the whole. To see how this works we
index by i the subpopulation in question. Then (6.86) holds if we subscript prices
by i, and for any 1wo households m and n in the same subpopulation #:

d ll'l |aur(cam1 z.m)’aclmf' =4 ITl lAlul = d In Iaur(cnrl znr)laclml' (692)

Estimation proceeds in a similar manner as before, either through first differ-
encing across individuals in the same subpopulation (Hayashi, Altonji, and
Kotlikoff. 1996}, or by estimating time dummies for each subpopulation (Miller
and Sicg, 1997).

7.2 Incomplete Markets

A much weaker assumption than time additivity, yielding a more gencral frame-
work, would be to relax this very specialized assumption about market struc-
ture, and assume only that agents sequentially allocate their resources to
maximize their utility, for example by trading their labor for goods which are
currently consumed for dividends or interest bearing asset claims. In this more
general framework the individual or household objectives remain the same. but
the opportunities the household faces are more complicated. With reference to
the recursive formufation developed in section 6, rather than facing markets for
contingent securitics at prices A,(z* ) z} defined in {(6.75), the agent can only buy
or sell combinations of stale contingencies in proportion to the payoffs of the
available securities. Therefore instead of trading claims to wealth nexi period,
only (a limited number of types of } securities are traded. For example if there
are L (finite) states and a smaller number of securities, the agent expects to
receive less utility over her lifetime than when the set of securitics span the siate
space (except in certain cases like those mentioned in scctien 6 in which con-
sumer preferences satisfy special aggregation conditions).

Let 4, = q,.{z) denote the guantity of assel r held by household n in period ¢
when state z occurs. p, = p,[z) its price, and 5, = 5,(z) the associated dividend.
In addition Lo constraining bequests (1o be nonnegative, fur example), the agent
must satisly, for each date t and state z. the inequalities:

2wl @i ~ G )t QS Z 0 (693)
This framework. which {as mentioned) is ofien referred to as the permanent

Dynamic Optimization 287

income hypothesis (PIH), yields two kinds of first-order conditions." First is the
spol market for goods consumed concurrently, examined in section 6. The other
first-order condition for this problem equates the price of a good to be received
next period in several states of the world, that is relative to ils current spot
price, with its maitching marginal rate of substitution. Letting:

m, = m(z) = [pz,,)) + 5.(z.))p(2) {6.94)

denote the return on asset r in time 1, the marginal rate of substitution between
current consumption and future consumption is:

E » au!(cnﬂli Zn rfl)laclﬂﬁl I Z.,] = 1'
aul(cnr' zm)laclnl

where. as before, du(c,. z,)/0c,, is the marginal utility of the first good.
Interpreting (6.95), note that il m,, paid off two units in good states of the world,
and nothing in bad states, {6.95) would be an equilibrium condition for the mar-
ginal rate of substitution belween a unit of consumption for today versus several
commodities which relate to eonsumption tomorrow, that bundle comprising
two units which would be delivered in the good states alone. Unless an asset r
exisis {can be consiructed) which pays off in only one state of the world, it is
impossible for an optimally behaving consumer to form pairwise allocations,
that depend only on her weatth and prices, between a good consumed in that
particular state and the same good consumed now. Limited market opportuni-
ties compel her 10 buy bundles of commodities that are typically intertemporally
linked through the fortunes of the assets she holds, even if her own utility func-
tion is additively separable across time.”

Several studies attempt to lest the PIH with panel data based on equation
(6.95). In the spirit of this literature, lct &,,,, denote the difference belween the
expectation on the left side of (6.95) and its realization:

[ a",(C,,,,h zn_!il)"aclmol ] au,(C,,,”. zn.nl)lacnuon

‘!‘.hm!l E W” , mf| T "t .
a“l((‘.lll' zul )l'a('“,, au,(Cm, Zm }laclm

Thus Ele,,,

1z,) = 0. Assuming the rcalization g,,,, < 1 for all {r, n, r), we obtain in logarith-

mie form the following identity for all (#, n, 1) and z,, by substituling (6.96) into

(6.95):

(6.95)

(6.96)

A ln [aur(cm' zm)faclml = ll'l (l - Elnrr) - h'l (Trn)- (69?)

Suppose we now average (6.97) over the cross-section {(assumed to be a random
sample) and define v!¥ as the limit in the sample size N. That is:
N
v e plim N D In(1 - &,,) = In (m,)
N n=1
N

=plimN"'S Aln[duc,, 2,)3c,.). (6.98)

h T w-1
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The eslm{almn approach is Lo treal v!}) as a time dummy to be estimated in the
second lipe of (6.98) and form an orthogonality condition in a cross-section or
panel context. Similarly, one could multiply equation (6.97) by an instrument

vector y_'= (yV, ..., y@)', define a vector of dummy variables v, as:
N
| oy = B N S plin (1= ey, = I (), (699)
N—pmm

and oblailn q orthogonality conditions of the form:
' n

| lim N~ Z YA 1n [du,(e,. 2, )¢, | — v, =0 (6.100)

i N v
where il is now assumed (as in the analogous time series literature) that all the
arguments in u/(c,,. z,} are observed. Since the g-dimensional coefficient on the
time dummy vector itself must be estimated if (6.100) is to be exploited in esti-
mation, this in itsell is of no help in identifying the structural parameters of
imercst,'}.‘nless they are restricted in some way. For without such restrictions,
there are'more parameters to estimate than orthogonality conditions! As a prae-
tical malﬁer, the studies essentially assume:

N
v, = v}, plim ¥ Z Yoo (6.101)
LT =1
Subsmullz (6.101) into {(6.100) and minimize a quadratic eriterion function in:
N
( NSy lain [Bulc,. 2,)0c,,} = vl {6.102)
! a<t

by choosjng one time dummy coefficient per year and the structural parameters
ol mlereJ ' From (6.99), assumption (6.101) is equivalent to:

N N

mmw meu—aw=mmw*zmu—amme*va

nel Lt n=1 N x|
i (6.103)

There is no reason to believe that the time dummies obey the restrictions
(6.101), ir equivalently that instruments exist which satisly (6.103) and are thus
uncorreldted with the forecast error made by a cross-section of the population
al a poirjt in time. When markets are incomplete agents are forced to make
choices ﬂver bundles or groups of goods that do not necessarily match the pro-
portions 1hey would desire if somehow the commodities were available sepa-
raicly. T‘tl.ls one would expecl past allocations, and alse those factors which
alfected past choices. to affect current and future poods allocations as well. The
very fact that the consumer cannot distinguish her choices over current quanti-
tics rom| what is available to her in the future cven after controlling for her
- endowment now and her planned bequests is the reason why picking instru-
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ments is so difficult for econometricians. Thus it does not seem possible to iden-
tify and estimate parameters characterizing the utility function without impos-
ing more assumptions than the PIH does.” Faced with this conundrum, recent
empirical research on dynamic structural models has become more explicit
about the ways in which markets might be incomplete. For example Rust and
Phelan (1995) examine the effects of social security on retirement; Margiotta
and Miller (1994) estimate a model of moral hazard and the design of optimal
compensation plans for managers.

7.3 Nonseparable Preferences

This section concludes the analysis by considering some implications of relaxing
the assumption that preferences over continuous choices are time separable.
Notice that because (6.11) is solved for all K discrete choices, it must hold for the
choice actually made. Therefore much of the discussion which follows applies more
generally, even though discrete choices are not treated explicitly. To avoid the dif-
ficulties associated with identifying 2 model of incomplete markets we will also
assume thal the CCM budget constraint (6.76) applies.? Thus (6.73) pertains but
(6.74). the assumpiion that the transition law does not depend on choices, is
relaxed. Let n denote the Lagrange multiplier associated with the lifetime budgel
constraint {6.76). After dropping the & subscripts, the FOC (6.11) simplifics 10

du (c,. 2)
it b LA
aC“ + Atk
| dv, (2*) dgl(s.c,. 2} N “ dh(slc,, 2)
= J 3~ ac, hisle,, z)ds I vialz )_ac,,__ d
(6.104)

The difference belween (6.104) and the analogous FOC in the time additive
case studicd in the previous section is the existence of the two expressions on
the right side. While n. the unobserved marginal utility of wealih, could be elim-
inated by taking logarithms and first differencing to obtain the counterparts to
{6.81) and (6.87). this generates a numerically messy expression inside a loga-
rithm. An ahernative is to partially diffcrence across consceutive periods.
Accordingly. define 3(A, _,/A)). the partial diffcrence operator, as:

A Az = f(2,0) — (A (2) (6.105)
for any real vecior mapping f(z,). Applying A(A,,/A,) to (6.104) yields:

- Al-l [aul(cr* z) [avr*l(z‘) ag(';, Cv Z) .
0= J( A, ) Jc,, +I dz* dc,, hisic. )
/ [
+1y(2) a:(-;cc,,z)] ] (6.106)
[H]
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Apart from the nonlogarithmic form, the two expressions inside the integral of
{6.106) distinguish it from {6.87), and both of them complicate estimation eon-
siderably. When ¢,, affects the transition probability density k(s c,. z) in a non-
degenerate way, then an approximation for the valuation function v(z}, is
required to evaluale the expression inside the integral. The first problem is,
then, how Lo obtain such an approximation (and incorporate the approximation
error into the asymptotic distribution theory for the estimation procedure).
Note too that v,(z) and its derivative dv,(z)/3z must be evaluated at different
points of the support for z. Also A(s | ¢, 2) and g{(s. c. z): in other words,
F(z 1z, ¢,) must be known or estimated. The second problem is how knowledge
about F(z | z,. ¢,) can be obtained from a cross-section or panel when aggregate
fluctuations are not fully anticipated.

When all uncertainty about the future is idiosyncratic to individuals, the state
variables are affected by the past choices in a deterministic way, and all time
dependence in (he state is observed, then equation (6.106) can easily be adapted
for estimation purposes, as [ollows.” Suppose z,, = (x,,, £,). where as before x,,
arc observed variables and g, is unobserved. We further assume that the law of
motion for x,, is simply a mapping of (x,, c,), denoted x, ,_, = Z(x,. c,), not to
be confused with the closely related but differently defined g{-) in {6.104) and

‘ (6.106). and thal ¢, is identically and independently distributed across (n, 1) with
probability distribution function G(e,). Because apgregate shocks are fully
anticipated by the population, the one-period inicrest rate r,is A, /A, — 1, and:

a“l(cm'xmv Em} + I aV“ l(xn AR 5) ag(-"m' C,,,)
ac!m arn i+l aclm

dG(s)].

(6.107)

Expressions [or derivatives of the valuation funclion are found by applying the
envelope theorem to vfx,. &,}). and the chain rule for differentiating composite
functions, to obtain:

I [ v (X o0 £) O (X, C
a.l'" " acm

o=au+n4

)]dG(s)

T vl
au| (cm + Xy "'-) ag(xm ’ (‘,") a&"(l wre Cnr) ]

r=1-1

{6.108)

where the expectation on the right side of (6.108) is 1aken over [uture idiosyn-
cratic shocks and their effecis on future consumption choices. The population
moments and their cotresponding sample analogs for use in estimation are
based on equations {6.107) and {6.118). Up to somc §, € © to be estimated, sup-
pose 2(x,, ¢,) can be paremeterized as a known function g(v,. c,. 8,), and the
marginal utility of consumption is also linear in the unobsersed variables. That
is 10 say:
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",(Cﬂt' 'rmo 6‘,“) = K,(C,.ﬂ xm' all) + C,"E,“ (6-109)

for some mapping k{c,. X... 8;) known up to 8, € 8. Assuming there exists an
instrument vector y,, satisfying the condition E{y,,s,] = 0 for all 5 greater than,
let £.(8) = y A(1 + r)h,(8), where:

Ox,(C,. Xp- )

h(0) =
n( ) aclm

r ~ 1-1
+_S_: aK!(cm-'rn'g) ag(xnucnne) n ag(xnr-cnn 6) . (6.110)

FETR ] a.l',,, aClm reped aX,"
Then equations (6.107) through (6.110) imply E[f.(8)] has a root at &, which is
now assumed to be unique in ©. Following the procedure outlined in equations
(6.85) and (6.86) then yields a N'? consistent and asymptotieally normal estima-
tor lor 8,.

To illustrate. suppose there is only one good, the vector ¢, collapsing Lo a posi-
tive real number c,.. and current consumption is additively separable from
everything apart from the previous period’s consumption. Motre specificaily,
assume:

«(c,x, 8) = Bict + yc,c,_\) (6.111)

1f there are no other observed slate variables, then x, = ¢,_, and g(-) is the iden-
tity function. Ignoring the factor of proportionality 8 which plays no role in esti-
mation:

h(8) = ach ' + ye,
ﬁl(g) = ."u{ﬁ(ﬂf:: ‘llfl + YCq rt‘.’) - (l + r,)(ac;:," + ‘)’C».m)]- (6112)

Noting N'E)., £.(8,) converges to 0 in probability thus provides a basis for Lhe
estimation of 8, = (a. y) with a household panel sampled over two periods.

8 Conclusion

This chapter has studied how econometricians confront cross-sectionat and
panel data to make inferences aboul the dynamic optlimization problems that
rational individuals solve. and the problems that an econometrician faces when
all the respondenis in the sample participate in the same compelitive equilib-
rium. Clearly considerable progress has been made in establishing the concep-
tual links between theoretical abstractions and their empirical counterparts.
Two benefits (rom this greater sophistication are that the estimated models are
easy lo interpret. and that models not explicitly based on economic theory are
now more susceptible 1o criticism than beflore. However. other benefits touted
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for structural modeling have (ailed to matcrialize, or have yielded an unin-
tended byproduct, When theories are only looscly connected to data analysis,
overfitting is possible, creating room for expansive claims. Structural modeling
imposed a discipline on empirical research that led to a rude awakening: theo-
ries which appear plausible and seem to agree with broad empirical regularities
receive considerably less supporl when subjected to the rigors of structural
modeling. Scaling back bold claims about the data to accommodate the findings
of dynamic struetural models is a healthy tonic (or the profession, encouraging
us to search for bigger, more informative dalta sets and to develop more subtle
hypotheses.

Nevertheless, inferring structural parameters of dynamic models from micro
data has not yel gained widespread acceplance within the profession. Many
years after the conception of this exciting idea, some economists still question
whether the value of a seamless transition between theory and econometric
practice is worth the effort. First, the reductionism, that economists can fruit-
{ully empirically analyze behavior as intimate as [ertility and marriage by apply-
ing mathcmatics and statistics to sample records of real people, is anathema to
many who might otherwise fee) comforiable with the broad postulates of eco-
nomics thinking, such as rational behaviour, and are even willing to muse over
theories of household production. Second are the rigid parameterizations to
which applicd econometricians limit themsclves, to achicve the twin goals of
internal consistency and traciability, at the expense of discarding more flexible
functional forms; similarly imposing the optimization and equilibrium postulates
is met with skepticism despite the abscnce of convincing alternatives. Third,
although micro data sets arc much more detailed and contain greater numbers
of observations than ever before, they still lack relevant sample information
econometricians would incorporate if thcy could. Fourth, unobserved hetero-
geneity to accommodale deficiencies in the data is typically modeled in a rudi-
mentary way, with the aim of achicving a parsimonious, empirically tractable
specification, rather than addressing any specific data limitation. Fifth, much
work on dynamic discrete choice is estimated using ML so thal {except for
further nesting within the overall ramework via [urther restrictions on the para-
meter space) there is' no samplce information left over 1o test the specification; in
addition those models that arc estimated with GMM vyield overidentifying
restrictions that do not usually point 10 an interesting alternative economics
framework. The sixth limitation is attributable 10 the high cost of programming
nonlinear models: revisiting data scts to verify previous resulls and check their
sensitivity to minor specification changes is hard work. The nel result of these
drawbacks is that one desirable fcature sometimes claimed [or structural estima-
tion, that it delivers policy invariant parameters which can be used in formulat-
ing policy advice, is not yet taken very seriously by policy makers themselves.
For this reason alone, these limitations present formidable challenges o future
research, which practitioness building dynamic structural models for estimation

" purposes must meel if the area is to prove more durable than a fad.
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Paradonxically. the goal of meeting this policy relevance criterion may require
the tasks of estimation and inference to be split from policy evaluation. Some of
the earliest applieations in dynamic structural modeling joined policy analysis
and estimation together, by solving the value function for lots of vectors in the
paremeter space to implement ML, and then conducting policy analysis by per-
turbing the estimated parameters. But in the last decade, faster computers and
tremendous advances in telecommuncation technologies have not only brought
richer data sets with greater numbers of observations, and speedier processors.
Researchers have become more keenly aware of the vast gulf separating our
propensily as economic theorists to write down dynamic structural models, and
our ability as practitioners in numerical analysis to solve them. By only solving
structural models for parameters that have first been estimated from identilying
equations that apply cheaply computed IV estimators, perhaps we can more
easily capitalize on lhe huge microeconomics data tracts that are becoming
increasingly available in estimation, and concentrate our numerical analysis on
models that make economic sense to policy makers.

Notes

Without implicaling anybody, | thank Xiaorong Dong, Yaniv Grinslein, and Nitin Mchia
for research assistance, and Mico Mrkaic, Vesna Prasnikar, John Rust, and Holger Sieg
for comments on an earlier drafi.

t  This field s no exception Lo the rule that surveys and commentary accompany its
gronth. Resjews of the estimation of dynamic models of diserele choice have been
underiaken by Eckstein and Wolpin (1989a), Pakes (1994). and Rust (1994a; 1994b).
The monograph by Devine and Kicfer (1991} and the chapier by Neumann in this
volume provide excellent coverage of the search literature, 1o which only passing
reference will be made here. In addition (o the chapters in this volume on labor
supply, consumer demand systems, and production, readers are referred 10 Allug
and Labadiz: (1994), Browning and Luscardi (1996), and Mifler and Sicg (1997) on
the equilibrium aspecis of continuous choices. A nomtechnical introduction o the
critical role panel data have played in advancing this literature s given in Miller
(1993).

2 Readers interested in a more technical and more extensive survey of this particular
topic are referred to Rust {1995). See also the discussion and reflerences contained in
chapter 7 in volume | of this handbook by Kim and Pagan (1995).

3 The literature on the rational expectations hypothesis is vast. For example see Muth
(1961} for an early staiement and rationale, Lucas (1976) on ils implications for
policy advisers, and Pesaran (1987) for a detailed critique.

4 For example Pakes (1994) noles *“‘that not ail models ... gencrate Euler equations
from simple compensating variations in adjacent periods ... Here we ... Jillustrate]
the logic of the argument that allows one to use Euler equations when they are
available™ (p. 186).

Several studies retax the distributional assumptions about unohserved helerogene-
ily. but in practicc assume a probabilily distribution with mass at a finite number of

[
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15
16

20

points for the purposes of siatistical inference and hypothesis testing (Miller, 1984;
Tabor, 1995).

If Z is a vector space rather than a finite set, and F,{z2 | z,, 8) is thc cumulative
probability distribution function which supports a probability density function that is
differentiable in each @ € @, then a similar log-likelihood can of course be formed
using the density, instead of the probabilily, in equation (6.12}.

This more ambitious research agenda attempts 10 {ree unobserved heterogeneity
from assumptions about parametric functional forms, but the price of this require-

ment is 1o greatly reduce the class of models that are identified. See Eibers and

Ridder (1982) and Heckman and Singer (1984) for analyses of duralion models
which are semiparametrically identified.

For example the model should not be rejecied by the information matrix test
{White, 1982).

See Zellner (1971), [or example, on the Bayesian updating used in the derivation of
(6.17) and (6.18).

Thus the subscript on v,(-) indicates d, = 1 and is not a time subscript, which would
be redundant in a time stationary Markov problem.

Miller (1984) used a cubic spline to interpolate beiween the points at which the inte-
grand is computed, atthough other methods are availablc. See Powell (1981), for
exampte, for an introduclion to approximaltion theory.

See also Keane (1994) and Gewcke and Keane (1996). and the articles referenced
there, for more delailed analysis and Monte Carlo evidence on using simulation
technigues Lo estimate models with limited dependent variables and serially corre-
lated unobservables with pancl data. The latter paper 1akes a Bayesian approach 1o
estimating dynamic programming models.

Sec Smart (1974) for a discussion of the contraction mapping theorem, and the
related approximation theorem. Stokey and Lucas (1989) and Aliug and Labadie
{1994} also contain extensive discussions of applications of the contraction mapping
in cconomics.

The probability distribution function for g, with location paramcler 9 is
clp( —e ira® M).

Sce McFadden (1973) or Maddala (1984), for example.

Hotz and Miller (1993) and Altug and Miller (1997) also consider models where
ohserved vartables in the state space belong to a veclor space. The choice and out-
come probabilities are estimated nonparametrically in this case, but the resulting
semiparamelric estimator for the struclural parameters retain N'? consistency and
asymptotic normality.

See Mace (1991}, Cochrane (1991), Townsend (1994), Udry (1994), Ham and Jacobs
(1994), as well as Hayashi, Allonji, and Kotlikoff (1996).

For example, the findings of Ahug and Miller (1990) should be interpreted as
statemenis aboul contingent allocations of labor and food, rather than about all
markets.

Hall and Mishkin (1982) began this literature. Recent contributions include Altonji
and Siow (1987), Zeldes (1989). Runkle (1991). Mariger and Shaw (1993), Nelson
(1994), and Luscardi {1996).

Altug and Miller (19%0) claborate on this point and its cconomctric implications
using the fifetime budget lormulatian (pp. 548-50). In chapter 9 of their monograph
Altug and Labadie (1994) llustrale it with a horrowing consteaint This sebsection
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draws heavily from Miller and Sieg (1997). See also Card {1994) for a discussion of
this identification problem. -

21 For example Hayashi, Altanji, and Kotlikoff (1996} recently asserted that:
“Although, as first pointed out by Chamberlain (1984) and subsequently empha-
sized by a number of authors, a zero time-series correlation does not necessarily
imply a zero cross-section correlation, the cross-section correlation will also be zero
il the stochastic environment can be represented as the sum of a macro component
common to all households and an idiosyncratic component'’” (p. 271), but they pro-
vide neither references nor conditions for when this additive condition holds.

22 Recognizing the difficulties associated with finding such instruments, Zeldes {1989}
and Runkle (1991) have taken a second-order expansion of the error term, but
unfortunately this approach does not overcome the problems discussed here,

23 Recently several studies have integrated continuous and discrete choices
(Aguirregabria, 1994; Allug and Miller, 1997).

24 See Shaw (1989) for an application of this approach to human capital accumulation
through experience on Lhe job.
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