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Abstract

The estimation of non-stationary dynamic discrete choice models typically requires making

assumptions far beyond the length of the data. We extend the class of dynamic discrete choice

models that require only a few-period-ahead conditional choice probabilities, and develop algo-

rithms to calculate the finite dependence paths. We do this both in single agent and games

settings, resulting in expressions for the value functions that allow for much weaker assumptions

regarding the time horizon and the transitions of the state variables beyond the sample period.

1 Introduction

Estimation of dynamic discrete choice models is complicated by the calculation of expected future

payoffs. These complications are particularly pronounced in games where the equilibrium actions and

future states of the other players must be margined out to derive a player’s best response. Originating

with Hotz and Miller (1993), two-step methods provide a way of cheaply estimating structural payoff

parameters in both single-agent and multi-agent settings. These two-step estimators first estimate
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Sciences Po, Toulouse, and Toronto for helpful comments. We acknowledge support from National Science Foundation

Grant Awards SES0721059 and SES0721098.
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conditional choice probabilities (CCP’s) and then characterize future payoffs as a function of the

CCP’s when estimating the structural payoff parameters.1

CCP estimators fall into two classes: those that exploit finite dependence, and those that do

not.2 The former entails expressing the future value term or its difference across two alternatives as

a function of just a few-period ahead conditional choice probabilities and flow payoffs.3 Intuitively, ρ

period finite dependence holds when there exist two sequences of choices that lead off from different

initial choices but generate the same distribution of state variables ρ+ 1 periods later.4

Employing a finite dependence representation makes it possible to relax some of the assumptions

about time that are commonly made when employing dynamic discrete choice models. Nonstationary

infinite horizon models can be estimated when finite dependence holds. In finite horizon models,

assumptions about the length of the time horizon and the evolution of the state variables beyond

the sample period, can be relaxed. For example, a dynamic model of schooling requires making

assumptions regarding the age of retirement, and also the functional form of utilities of older workers,

although the data available to researchers might only track individuals into their twenties or thirties.

Furthermore, estimation is fast because conditional choice probabilities need only be computed for

a few periods ahead of the current choices.

Many papers have used the finite dependence property in estimation, often employing either a

1See Arcidiacono and Ellickson (2011) for a review.
2CCP estimators that do not rely on finite dependence include those of Hotz, Miller, Sanders, and Smith (1994),

Aguirregabiria and Mira (2002, 2007), Bajari, Benkard, and Levin (2007), and Pesendorfer and Schmidt-Dengler

(2008).
3See Hotz and Miller (1993), Altug and Miller (1998), Arcidiacono and Miller (2011), Aguirregabiria and Magesan

(2013), and Gayle (2013).
4The sequences of choices need not be optimal and may involve mixing across choices within a period.

2



terminal or renewal action.5 More general forms of finite dependence, whether a feature of the data

or imposed by the authors, have been applied in models of fertility and female labor supply (Altug

and Miller 1998, Gayle and Golan 2012, Gayle and Miller 2016), migration (Bishop, 2012, Coate

2013, Ma 2013, Ransom 2014), participation in the stock market (Khorunzhina 2013), agricultural

land use (Scott, 2013), smoking (Matsumoto 2014), education (Arcidiacono, Aucejo, Maurel, and

Ransom 2014), occupational choice (James 2014), and housing choices (Khorunzhina and Miller

2016). These papers demonstrate the advantage of exploiting finite dependence in estimation: it is

not necessary to solve the value function within a nested fixed point algorithm, nor invert matrices

the size of the state space.6

The current method for determining whether finite dependence holds or not is to guess and

verify. The main contribution of this paper is to provide a systematic way of determining whether

finite dependence holds when there are a (large but) finite number of states. To accomplish this, we

slightly generalize the definition of finite dependence given in Arcidiacono and Miller (2011). Key

to the generalization is recognizing that the ex-ante value function can be expressed as a weighted

average of the conditional value functions of all the alternatives plus a function of the conditional

choice probabilities, where all the weights sum to one but some may be negative or greater than

one. As one of our examples shows, this slight generalization enlarges the class of models that can

be cheaply estimated by exploiting this more inclusive definition of the finite dependence property.

Determining whether finite dependence holds for a pair of initial choices is a nonlinear problem,

5See, for example Hotz and Miller (1993), Joensen (2009), Scott (2013), Arcidiacono, Bayer, Blevins, and Ellickson

(forthcoming), Declerq and Verboven (2014), Mazur (2014), and Beauchamp (2015). The last three exploit one period

finite dependence to estimate dynamic games.
6The finite dependence property has also been directly imposed on the decision making process in models to

economize on the state space. See for example Bishop (2012) and Ma (2013). Assuming players do not use all the

information at their disposal reduces the state space players use to solve their optimization problems. This approach

provides a parsimonious way of modeling bounded rationality when the state space is high dimensional.
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yet the algorithm we propose only has a finite number of steps. We partition candidate paths for

demonstrating finite dependence in say ρ periods; paths that reach the same set of states reached

with a nonzero weight are collected together. Partitioning by whether a weight is zero or not, rather

than the value of the weight, reduces an uncountable infinity of paths to a finite set. Each element

in the partition maps into a linear system of equations, and we check the rank of the system, also a

finite number of operations. The size of the linear system is based on the number of states attainable

in ρ− 1 periods from the initial state, not the total number of states in the model. The algorithm

proceeds iteratively, by checking the determinants of selected elements in the partition. If one (or

more) of the elements has a nonzero determinant, then the pair of choices exhibits ρ period finite

dependence; otherwise it does not. Once finite dependence is established, another linear operation

(on a finite number of equations) yields a set of weights that can be used in any CCP estimator that

exploits finite dependence.

Many estimators exploiting finite dependence have an intrinsically linear structure. From the

standpoint of computational efficiency and accuracy, the advantages of linear over nonlinear solution

methods are well known. For example the Monte Carlo applications given in our previous work (Ar-

cidiacono and Miller, 2011) compare CCP estimators exploiting the finite dependence and linearity

with nonlinear Maximum Likelihood estimators. We find the CCP estimators are much cheaper

to compute and are almost as precise as MLE even in low dimensional problems, where nonlinear

methods are least likely to be computationally burdensome.

In game settings, finite dependence is applicable to each player individually. Here finite depen-

dence relates to transition matrices for the state variables when a designated player places arbitrary

weight on each of her possible future decisions (so long as the weights sum to one within a period)

and the other players follow their equilibrium strategies. Consequently, finite dependence in games

cannot be ascertained from the transition primitives alone (as in the individual optimization case).
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Indeed, whether or not finite dependence holds might also hinge on which equilibrium is played,

not a paradoxical result, because different equilibria for the same game sometimes reveal different

information about the primitives, so naturally require different estimation approaches.

Research on finite dependence in games has been restricted, up until now, to cases where there

is a terminal or renewal action (that ends or restarts the process governing the state variables for

individual players). Absent these two cases, one-period finite dependence fails to hold, because the

equilibrium actions of the other players depend on what the designated agent has already done.

Hence the distribution of the state variables, which the other players partly determine, depends

on the actions of the designated player two periods earlier. These stochastic connections, a vital

feature of many strategic interactions, has limited empirical research in estimating games with

nonstationarities. We develop an algorithm to solve for finite dependence in a broader class of

games than those characterized by terminal and renewal actions. As in the single agent case, the

algorithm entails solving a linear system of equations where the number of equations is dictated by

the possible states that can be reached a few periods ahead.

The rest of the paper proceeds as follows. Section 2 lays out our framework for analyzing

finite dependence in discrete choice dynamic optimization and games. In Section 3 we define finite

dependence, provide a new representation of this property, and use the representation to demonstrate

how to recover finite dependence paths in both single agent and multi-agent settings. New examples

of finite dependence, derived using the algorithm, are provided in Section 4, while Section 5 concludes

with some remarks on outstanding questions that future research might address.

2 Framework

This section first lays out a general class of dynamic discrete choice models. Drawing upon our

previous work (Arcidiacono and Miller, 2011), we extend our representation of the conditional
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value functions which plays an overarching role in our analysis, and then modify our framework to

accommodate games with private information.

2.1 Dynamic optimization discrete choice

In each period t ∈ {1, . . . , T} until T ≤ ∞, an individual chooses among J mutually exclusive

actions. Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero otherwise. The current

period payoff for action j at time t depends on the state xt ∈ {1, . . . , X}.7 If action j is taken at

time t, the probability of xt+1 occurring in period t+ 1 is denoted by fjt(xt+1|xt).

The individual’s current period payoff from choosing j at time t is also affected by a choice-

specific shock, εjt, which is revealed to the individual at the beginning of the period t. We assume

the vector εt ≡ (ε1t, . . . , εJt) has continuous support, is drawn from a probability distribution that

is independently and identically distributed over time with density function g (εt), and satisfies

E [max {ε1t, . . . , εJt}] ≤ M < ∞. The individual’s current period payoff for action j at time t is

modeled as ujt(xt) + εjt.

The individual takes into account both the current period payoff as well as how his decision

today will affect the future. Denoting the discount factor by β ∈ (0, 1), the individual chooses the

vector dt ≡ (d1t, . . . , dJt) to sequentially maximize the discounted sum of payoffs:

E


T∑
t=1

J∑
j=1

βt−1djt [ujt(xt) + εjt]

 (1)

where at each period t the expectation is taken over the future values of xt+1, . . . , xT and εt+1, . . . , εT .

Expression (1) is maximized by a Markov decision rule which gives the optimal action conditional

on t, xt, and εt. We denote the optimal decision rule at t as dot (xt, εt), with jth element dojt(xt, εt).

The probability of choosing j at time t conditional on xt, pjt(xt), is found by taking dojt(xt, εt) and

7Our analysis is based on the assumption that xt belongs to a finite set, an assumption that is often made in this

literature. See Aguirregabiria and Mira (2002) for example. However it is worth mentioning that finite dependence

can be applied without making that assumption. See Altug and Miller (1998) for example.

6



integrating over εt:

pjt(xt) ≡
∫
dojt (xt, εt) g (εt) dεt (2)

We then define pt(xt) ≡ (p1t(xt), . . . , pJt(xt)) as the vector of conditional choice probabilities.

Denote Vt(xt), the ex-ante value function in period t, as the discounted sum of expected future

payoffs just before εt is revealed and conditional on behaving according to the optimal decision rule:

Vt(xt) ≡ E


T∑
τ=t

J∑
j=1

βτ−tdojτ (xτ , ετ ) (ujτ (xτ ) + εjτ )


Given state variables xt and choice j in period t, the expected value function in period t+1, dis-

counted one period into the future, is β
∑X

xt+1=1 Vt+1(xt+1)fjt (xt+1|xt). Under standard conditions,

Bellman’s principle applies and Vt(xt) can be recursively expressed as:

Vt(xt) =
J∑
j=1

∫
dojt (xt, εt)

ujt(xt) + εjt + β
X∑

xt+1=1

Vt+1(xt+1)fjt (xt+1|xt)

 g (εt) dεt

We then define the choice-specific conditional value function, vjt(xt), as the flow payoff of action j

without εjt plus the expected future utility conditional on following the optimal decision rule from

period t+ 1 on:8

vjt(xt) = ujt(xt) + β

X∑
xt+1=1

Vt+1(xt+1)fjt (xt+1|xt) (3)

Our analysis is based on a representation of vjt(xt) that slightly generalizes Theorem 1 of Ar-

cidiacono and Miller (2011). Both results are based on their Lemma 1, that for every t ∈ {1, . . . , T}

and p ∈ ∆J , the J dimensional simplex, there exists a real-valued function ψj (p) such that:

ψj [pt(x)] ≡ Vt(x)− vjt(x) (4)

To interpret (4), note that the value of committing to action j at period t before seeing εt and

behaving optimally thereafter is vjt(xt) + E [εjt] . Therefore the expected loss from pre-committing

to j versus waiting until εt is observed and only then making an optimal choice, Vt(xt), is the constant

8For ease of exposition we refer to vjt(xt) as the conditional value function in the remainder of the paper.
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ψj [pt(xt)] minus E [εjt] , a composite function that only depends on xt through the conditional choice

probabilities. This result leads to the following theorem, proved using an induction.

Theorem 1 For each choice j ∈ {1, . . . , J} and τ ∈ {t+ 1, . . . , T} , let any ωτ (xτ , j) denote any

mapping from the state space {1, . . . , X} to RJ satisfying the constraints that |ωkτ (xτ , j)| <∞ and∑J
k=1 ωkτ (xτ , j) = 1. Recursively define κτ (xτ+1|xt, j) as:

κτ (xτ+1|xt, j) ≡


fjt(xt+1|xt) for τ = t∑X

xτ=1

∑J
k=1 ωkτ (xτ , j) fkτ (xτ+1|xτ )κτ−1(xτ |xt, j) for τ = t+ 1, . . . , T

(5)

Then for T < T :

vjt(xt) = ujt(xt) +
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t [ukτ (xτ ) + ψk[pτ (xτ )]]ωkτ (xτ , j)κτ−1(xτ |xt, j) (6)

+
X∑

xT+1

βT +1−tVT +1(xT +1)κT (xT +1|xt, j)

and for T = T :

vjt(xt) = ujt(xt) +
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t [ukτ (xτ ) + ψk[pτ (xτ )]]ωkτ (xτ , j)κτ−1(xτ |xt, j) (7)

For the purposes of this work it is convenient to interpret T as the final period in the sample;

typically T < T. Arcidiacono and Miller (2011) prove the theorem when T = T and ωkτ (xτ , j) ≥ 0 for

all k and τ. In that case, κτ (xτ+1|xt, j) is the probability of reaching xτ+1 by following the sequence

defined by ωτ (xτ , j) and the value function representation extending over the whole decision-making

horizon.9

2.2 Extension to dynamic games

This framework extends naturally to dynamic games. In the games setting, we assume that there

are N players making choices in periods t ∈ {1, . . . , T}. The systematic part of payoffs to the

9The extension to negative weights is also noted in Gayle (2013).
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nth player not only depends on his own choice in period t, denoted by d
(n)
t ≡

(
d
(n)
1t , . . . , d

(n)
Jt

)
,

and the state variables xt, but also the choices of the other players, which we now denote by

d
(∼n)
t ≡

(
d
(1)
t , . . . , d

(n−1)
t , d

(n+1)
t , . . . , d

(N)
t

)
. Denote by U

(n)
jt

(
xt, d

(∼n)
t

)
+ ε

(n)
jt the current utility of

player n in period t, where ε
(n)
jt is an identically and independently distributed random variable that

is private information to player n. Although the players all face the same observed state variables,

these state variables typically affect players in different ways. For example, adding to the nth player’s

capital may increase his payoffs and reduce the payoffs to the others. For this reason the payoff

function is superscripted by n.

Each period the players make simultaneous choices. We denote by Pt

(
d
(∼n)
t |xt

)
the joint

conditional choice probability that the players aside from n collectively choose d
(∼n)
t at time t given

the state variables xt. Since ε
(n)
t is independently distributed across all the players, Pt

(
d
(∼n)
t |xt

)
has the product representation:

Pt

(
d
(∼n)
t |xt

)
=

N∏
n′=1
n′ 6=n

 J∑
j=1

d
(n′)
jt p

(n′)
jt (xt)

 (8)

We assume each player acts like a Bayesian when forming his beliefs about the choices of the other

players and that a Markov-perfect equilibrium is played. Hence, the beliefs of the players match the

probabilities given in equation (8). Taking the expectation of U
(n)
jt

(
xt, d

(∼n)
t

)
over d

(∼n)
t , we define

the systematic component of the current utility of player n as a function of the state variables as:

u
(n)
jt (xt) =

∑
d
(∼n)
t ∈JN−1

Pt

(
d
(∼n)
t |xt

)
U

(n)
jt

(
xt, d

(∼n)
t

)
(9)

For future reference we call u
(n)
jt (xt) the reduced form payoff to player n from taking action j in

period t when the state is xt.

The values of the state variables at period t + 1 are determined by the period t choices by all

the players as well as the values of the period t state variables. We consider a model in which the

state variables can be partitioned into those that are affected by only one of the players, and those
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that are exogenous. For example, to explain the number and size of firms in an industry, the state

variables for the model might be indicators of whether each potential firm is active or not, and

a scalar to measure firm capital or capacity; each firm controls their own state variables, through

their entry and exit choices, as well as their investment decisions.10 The partition can be expressed

as xt ≡
(
x
(0)
t , x

(1)
t , . . . , x

(N)
t

)
, where x

(0)
t denotes the states that are exogenously determined by

transition probability f0t

(
x
(0)
t+1

∣∣∣x(0)t )
, and x

(n)
t ∈ X (n) ≡

{
1, . . . , X(n)

}
is the component of the state

controlled or influenced by player n. Let f
(n)
jt

(
x
(n)
t+1

∣∣∣x(n)t

)
denote the probability that x

(n)
t+1 occurs at

time t+1 when player n chooses j at time t given x
(n)
t . Many models in industrial organization exploit

this specialized structure because it provides a flexible way for players to interact while keeping the

model simple enough to be empirically tractable.11 Since the transitions of the exogenous variables

do not substantively effect our analysis, we ignore them for the rest of the paper to conserve on

notation.

Denote the state variables associated with all the players aside from n as:

x
(∼n)
t ≡

(
x
(1)
t , . . . , x

(n−1)
t , x

(n+1)
t . . . , x

(N)
t

)
∈ X (∼n) ≡ X (1) × . . .×X (n−1) ×X (n+1) × . . .×X (N)

Under this specification the reduced form transition generated by their equilibrium choice probabil-

ities is defined as:

f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
≡

N∏
n′=1
n′ 6=n

[
J∑
k=1

p
(n′)
kt (xt) f

(n′)
kt

(
x
(n′)
t+1

∣∣∣x(n′)t

)]

As in Subsection 2.1, consider for all τ ∈ {t, . . . , T} any sequence of decision weights:

ω(n)
τ (xτ , j) ≡

(
ω
(n)
1τ (xτ , j), . . . , ω

(n)
Jτ (xτ , j)

)
10The second example in Arcidiacono and Miller (2011) also belongs to this class of models.
11All the empirical applications of structural modeling of which we are aware have this property, including those

based on Ericson and Pakes (1995). For example, firms affect their own product quality through their own investment

decisions, but do not directly affect the product quality of other players. Thus each firm’s decisions affect the product

quality of other players only through the effect on the decisions of the other players.
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subject to the constraints
∑J

k=1 ω
(n)
kτ (xτ , j) = 1 and starting value ω

(n)
jt (xt, j) = 1. Given the

equilibrium actions of the other players impounded in f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
, we recursively define

κ
(n)
τ (xτ+1|xt, j) for the sequence of decision weights ω

(n)
kτ (xτ , j) over periods τ ∈ {t+ 1, . . . , T}

in a similar manner to Equation (5) as:

κ(n)τ (xτ+1|xt, j) ≡ f0τ
(
x
(0)
τ+1

∣∣∣x(0)τ ) X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
ω
(n)
kτ (xτ , j) f

(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
κ
(n)
τ−1(xτ |xt, j)

with initializing function:

κ
(n)
t (xt+1|xt, j) ≡ f (n)jt

(
x
(n)
t+1

∣∣∣x(n)t

)
ft

(
x
(∼n)
t+1 |xt

)
f0t

(
x
(0)
t+1

∣∣∣x(0)t )
Letting:

fjt (xt+1 |xt ) = f0t

(
x
(0)
t+1

∣∣∣x(0)t )
f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
f
(n)
jt

(
x
(n)
t+1

∣∣∣x(n)t

)
(10)

and adding n superscripts to all the other terms in (7) , it now follows that Theorem 1 applies to

this multi-agent setting in exactly the same way as in a single agent setting.

3 Finite dependence

If there were transition matrices satisfying the equality κ∗T (xT +1|xt, 1) = κ∗T (xT +1|xt, j), then (6)

implies differences in the conditional value functions vjt(xt)−v1t(xt) could be expressed as a weighted

sum of flow payoffs and ψk (·) terms that occur between t and T . Finite dependence is the natural

generalization of an equality like κ∗T (xT +1|xt, 1) = κ∗T (xT +1|xt, j). It captures the notion that

the differential effects on the state variable from taking two distinct actions in period t might be

obliterated, say ρ periods later, if certain corrective paths are followed that are specific to the initial

action.
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3.1 Defining finite dependence

Consider two sequences of decision weights that begin at date t in state xt, one with choice i and

the other with choice j. We say that the pair of choices {i, j} exhibits ρ-period dependence if there

exist sequences of decision weights from i and j for xt such that :

κt+ρ(xt+ρ+1|xt, i) = κt+ρ(xt+ρ+1|xt, j) (11)

for all xt+ρ+1. That is, the weights associated with each state are the same across the two paths

after ρ periods.12

Several comments on this definition are in order. First, finite dependence trivially holds in all

finite horizon problems. However the property of ρ-period dependence only merits attention when

ρ < T − t. To avoid repeatedly referencing the trivial case of ρ = T − t, we will henceforth write

finite dependence holds only when (11) applies for ρ < T − t. Second, finite dependence is defined

with respect to a pair of choices conditional on the value of the state variable, not the whole model.

The main reason for this narrow definition is that finite dependence might hold for some choice

pairs but not others, and for some certain states but not others. Even in this case, we can reduce

the computational burden of estimating the model by exploiting finite dependence on the pairs of

choices where it holds. Third, as explained in Arcidiacono and Miller (2016), finite dependence

between just two choices in a single agent setting where there are J choices each period, helps in

identifying counterfactual regimes generated by temporary changes in the transition matrix. Finally

a more general definition of finite dependence would encompass mixed choices to start the sequence,

not just pure strategies; our analysis easily extends to the more general case.

12Aguirregabiria and Magesan (2013, 2016) and Gayle (2013) restrict their analyses to cases where there is one

period finite dependence, thus ruling out labor supply applications such as Altug and Miller (1998), as well as games

that do not have a terminal choice.
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Under finite dependence, differences in current utility ujt(xt)− uit(xt) can be expressed as:

ujt(xt)− uit(xt) = ψi[pt(xt)]− ψj [pt(xt)] (12)

+

t+ρ∑
τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t {ukτ (xτ ) + ψk[pτ (xτ )]}

 ωkτ (xτ , i)κτ−1(xτ |xt, i)

−ωkτ (xτ , j)κτ−1(xτ |xt, j)


This equation follows directly from Equations (4) and (7) , in Theorem 1.13 As the empirical

applications of finite dependence illustrate, equations like (12) provide the basis for estimation

without resorting to the inversion of high dimension matrices or long simulations. Aside from its

computational benefits, finite dependence has a second attractive feature–empirical content–because

it is straightforward to test whether (11) is rejected by the data.

3.2 One-period dependence in optimization problems with two choices

As foreshadowed in the Introduction, the algorithm for determining ρ-period dependence for ρ > 1

iterates between two procedures: checking the rank of a matrix, and listing the elements of the

matrix. The procedure is simpler to establish one-period dependence as there are no intermediate

decisions between the initial choice and the choice of weights that generate finite dependence. Hence,

checking the rank of a particular matrix is sufficient for determining one-period dependence.

There is a second reason for investigating one-period dependence before analyzing the more

general case. Because the guess and verify method is essentially the only method researchers have

to determine finite dependence, almost all empirical applications of finite dependence have exploited

two special cases of one-period dependence, models with two choices where one of them is either a

terminal or a renewal choice. Terminal choices end the optimization problem or game by preventing

any future decisions; irreversible sterilization against future fertility (Hotz and Miller, 1993), and

firm exit from an industry (Aguirregabiria and Mira, 2007; Pakes, Ostrovsky, and Berry, 2007) are

13Appealing to (4) , replace vjt(x) with Vt(x)− ψj [pt(x)] in (7) and perform a similar substitution for vit(x). Upon

differencing the two equations, the Vt(x) terms drop out.
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examples. The defining feature of a renewal choice is that it resets the states that were influenced

by past actions. Turnover and job matching (Miller, 1984), or replacing a bus engine (Rust, 1987),

are illustrative of renewal actions. In such models, following any choice with a terminal or renewal

choice yields the same value of the state variable after two periods. Therefore the key difference

between terminal and renewal actions is that the former end the dynamic sequence, turning the

optimization problem into a stopping problem. Designate the first choice as the terminal or renewal

choice. Following any choice j ∈ {1, . . . , J} with a terminal or renewal choice leads to same value

of state variables after two periods, because for all xt+2:

X∑
xt+1=1

f1,t+1(xt+2|xt+1)fjt(xt+1|xt) =
X∑

xt+1=1

f1,t+1(xt+2|xt+1)f1t(xt+1|xt) (13)

Therefore Equation (11) is satisfied at t + 2 for all j ∈ {1, . . . , J} and x ∈ X by setting weights

ωk,t+1(xt+1, j) = 1 if k = 1 and zero otherwise.

We begin a systematic search for finite dependence by analyzing the special case of one-period

dependence where there are two choices. Formally, the definition of κt+1(x
′|xt, j) given by Equation

(5) implies that one-period dependence holds in this specialization at xt if and only if there exists a

weighting rule such that κt+1(x
′|xt, 1) = κt+1(x

′|xt, 2) for all x′ ∈ X . Since J = 2 and the weights

sum to one, we can economize on subscripts by setting ωt+1(xt+1, j) ≡ ω2,t+1(xt+1, j), the weight

on the second action. Thus ωt+1(xt+1, j) must solve:

X∑
xt+1=1


[f2,t+1(x

′|xt+1)− f1,t+1(x
′|xt+1)]

× [ωt+1(xt+1, 2)f2t(xt+1|xt)− ωt+1(xt+1, 1)f1t(xt+1|xt)]


=

X∑
xt+1=1

f1,t+1(x
′|xt+1) [f1t(xt+1|xt)− f2t(xt+1|xt)] (14)

for all x′ ∈ X . Nominally this is a linear system of X−1 equations in ωt+1(xt+1, 1) and ωt+1(xt+1, 2);

if the X − 1 equations are satisfied for all but one of the state variables, the equation associated

with the remaining state will automatically be satisfied since summing κt+1(x
′|xt, j) over x′ equals

one.
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The dimension of ωt+1(xt+1, j) is X for each j ∈ {1, 2} . Therefore there are fewer equations

than unknowns. However, if a state is not reached at t+ 1, then changing the weight placed on an

action at that state cannot help in obtaining finite dependence. Threrefore we need only consider

states at t+ 1 that can be reached with positive probability from at least one of the initial choices.

The fact that some of the states may not be reached at t + 1 regardless of the initial choice

effectively reduces the number of relevant unknowns in the system. Another feature of the system

reduces the relevant number of equations. The equations associated with states at t+ 2 that cannot

be reached given either initial choice are automatically satisfied: given either initial choice, the

weight on these states at t+ 2 is zero.

We can incorporate these two features into the system of equations given by (14) as follows.

Suppose Aj,t+1 states can be reached with positive probability in period t + 1 from state xt with

choice j at time t, and denote their set by Aj,t+1 ⊆ X . Thus x ∈ Aj,t+1 if and only if fjt(x|xt) > 0.

Let At+2 ⊆ X denote the states that can be reached with positive probability in period t+ 2 from

any element in the union A1,t+1
⋃
A2,t+1 with either action at t+ 1. Thus x′ ∈ At+2 if and only if

fk,t+1(x
′|x) > 0 for some x ∈ A1,t+1

⋃
A2,t+1 and k ∈ {1, 2} . Finally, denote by At+2 the number

of states in At+2(xt). It now follows that the matrix-equivalent of Equation (14) reduces to a linear

system of At+2 − 1 equations with A1,t+1 +A2,t+1 unknowns.14

Denote by Kjt(Aj,t+1) the Aj,t+1 dimensional vector of nonzero probabilities in the string:

fjt(1|xt), . . . , fjt(X|xt). It gives the one period transition probabilities to Aj,t+1 from xt when choice

j is made. Let Fk,t+1(Aj,t+1) denote the first At+2−1 columns of the Aj,t+1×At+2 transition matrix

from Aj,t+1 to At+2 when choice k is made in period t+ 1.15 A typical element of Fk,t+1(Aj,t+1) is

14We can remove one equation from the At+2 system because if the weights associated with each state match for

At+2 − 1 states, they must also match for the remaining state
15We focus on the first At+2 − 1 columns because the last column must be given by one minus the sum of the

previous columns.
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fk,t+1(x
′|x) where x ∈ Aj,t+1 and x′ ∈ At+2. Note that some elements of Fk,t+1(Aj,t+1) may be zero.

Finally, let Ωt+1(Aj,t+1, j) denote an Aj,t+1 dimensional vector of weights on each of the attainable

states at t+ 1 for taking the second choice at that time given initial choice j, comprising elements

ωt+1(x, j) for each x ∈ Aj,t+1.

To see how these matrices relate to (14), momentarily consider what would happen if all the

states were attainable at both t + 2 and t + 1 given an initial state xt and initial choice j. In this

case:

A1,t+1 = A2,t+1 = At+2 = X , Ωt+1(Aj,t+1, j) = Ωt+1(X , j), Kjt(Aj,t+1) = Kjt(X )

so we can write:

Ωt+1(X , j) ◦ Kjt(X ) =

[
ωt+1(1, j)fjt(1|xt) . . . ωt+1(X, j)fjt(X|xt)

]′
where ◦ refers to element-by-element multiplication. Also Fk,t+1(Aj,t+1) becomes the t+1 transition

matrix given choice k, less one column, say:

Fk,t+1(Aj,t+1) = Fk,t+1(X ) =


fk,t+1(1|1) . . . fk,t+1(X − 1|1)

...
. . . . . .

fk,t+1(1|X) . . . fk,t+1(X − 1|X)


Stacking the equations in (14) for all x′ ∈ {1, . . . , X − 1} , the left hand side of the stack is a linear

combination of four expressions, each taking the form:
∑X

xt+1=1 fk,t+1(1|xt+1)ωt+1(xt+1, j)fjt(xt+1|xt)

...∑X
xt+1=1 fk,t+1(X − 1|xt+1)ωt+1(xt+1, j)fjt(xt+1|xt)

 = [Fk,t+1(X )]′ [Ωt+1(X , j) ◦ Kjt(X )] (15)

Note that when k = 2, Equation (15) is the weight for each element of X when the initial choice j

is followed by the second choice.

Typically not all states in X are attainable at period t+1 given initial choice j. For all x̃ /∈ Aj,t+1,

that is when fjt(x̃|xt) = 0, we remove the element ωt+1(x̃, j)fjt(x̃|xt) from Ωt+1(X , j) ◦ Kjt(X ) and
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the x̃th row in Fk,t+1(X ). This reduces the dimension of Ωt+1(X , j) ◦ Kjt(X ) to Aj,t+1 and the

dimension of Fk,t+1(X ) from X × (X − 1) to Aj,t+1 × (X − 1). Similarly, if x̂ /∈ At+2, in words if x̂

is unattainable given either initial choice regardless of the weighting rules at t+ 1, then we remove

the x̂th column of Fk,t+1(X ), which is a vector of zeros. The transition matrix Fk,t+1(Aj,t+1) is then

a Aj,t+1 × (At+2 − 1) matrix.

Substituting these transformations into (14) we now express the system of At+2 − 1 equations

with A1,t+1 + A2,t+1 unknowns in matrix form. Define the At+2 − 1 dimensional vector Kt+1, and

the (At+2 − 1)× (A1,t+1 +A2,t+1) matrix Ht+1, respectively as:

Kt+1 ≡

 F1,t+1(A1,t+1)

−F1,t+1(A2,t+1)


′  K1t(A1,t+1)

K2t(A2,t+1)

 , Ht+1 ≡

 F2,t+1(A2,t+1)− F1,t+1(A2,t+1)

F1,t+1(A1,t+1)− F2,t+1(A1,t+1)


Then one period dependence holds if and only if there exists an (A1,t+1 +A2,t+1) vector of unknowns

denoted by Dt+1 solving:

Kt+1 = Ht+1

 Ωt+1(A2,t+1, 2) ◦ K2t(A2,t+1)

Ωt+1(A1,t+1, 1) ◦ K1t(A1,t+1)

 ≡ Ht+1Dt+1 (16)

Note that if the weights placed on all the states in Aj,t+1 but one are the same across the two paths

then the weights placed on the remaining state must be the same as well. Appealing to Hadley

(1961, pages 108-109), a solution to (16) for Dt+1 exists if and only if the rank of Ht+1 equals the

rank of the augmented matrix H∗t+1 ≡
[
Kt+1

...Ht+1

]
formed by augmenting Ht+1 with the extra

column Kt+1.

Denote the rank of Ht+1 by Rt+1 and the rank of of H∗t+1by R∗t+1. Clearly Rt+1 ≤ R∗t+1 ≤ Rt+1+1

and Rt+1 ≤ min {At+2 − 1, A1,t+1 +A2,t+1}. There are two cases to consider:

1. Suppose Rt+1 = A1,t+1 + A2,t+1. If in addition Rt+1 = At+2 − 1, implying Ht+1 is square,

we solve for the weights by inverting Ht+1 and then element-by-element dividing both sides of
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(16) by the matching K vectors, yielding: Ωt+1(A2,t+1, 2)

Ωt+1(A1,t+1, 1)

 = H−1t+1Kt+1.

/ K2t(A2,t+1)

K1t(A1,t+1)

 (17)

where ./ refers to element-by-element division. If Rt+1 > At+2 − 1, we successively eliminate

A1,t+1 +A2,t+1−At+2 + 1 linearly dependent columns of Ht+1 to form a square matrix of rank

At+2 − 1. We now remove the corresponding elements in Dt+1 in (16) so that the reduced

At+2 − 1 dimensional vector conforms with the square matrix, by deleting the elements that

would have been multiplied by the columns removed from Ht+1, effectively giving zero weight

to the second action for the removed elements. Finally an analogous equation to (17) is solved

for the weights characterizing finite dependence.16

2. Alternatively Rt+1 < A1,t+1 + A2,t+1. First we successively eliminate A1,t+1 + A2,t+1 − Rt+1

linearly dependent columns of Ht+1 to form an (At+2 − 1) × Rt+1 matrix denoted by Ht+1.

This operation corresponds to reducing the vector length of Dt+1 from A1,t+1 + A2,t+1 to

Rt+1 by effectively setting A1,t+1 + A2,t+1 − Rt+1 weights to zero. Denote the Rt+1 × 1

vector of weights not eliminated by Dt+1. We now eliminate At+2 − Rt+1 − 1 rows of Ht+1

to form an Rt+1 dimensional square matrix with rank Rt+1 denoted by Ht+1. Strictly for

notational purposes, so without loss of generality, we reorder the equations defining (16) so

that the linearly independent equations are the bottom ones. This allows us to partition

H
′
t+1 ≡

[
H
′
t+1

...H′t+1

]
and K′t+1 ≡

[
K′t+1

...K′t+1

]
, where Ht+1 is (At+2 − 1−Rt+1)×Rt+1, while

K′t+1 is (At+2 − 1−Rt+1)×1 and Kt+1 is Rt+1×1. Inverting Ht+1 we obtain Dt+1 = H−1t+1Kt+1.

Thus a solution to (16) attains in this knife edged case if and only if Dt+1 solves At+2−Rt+1−1

additional equations Kt+1 = Ht+1H−1t+1Kt+1.

16The set of weights generated by this procedure depends on which linearly dependent columns are removed. There-

fore the weight vectors satisfying finite dependence are not unique.
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To illustrate the algorithm in the renewal and terminal state models mentioned above, let X ≡

{1, 2, . . . , X} , and suppose the first choice denotes the terminal or renewal choice which returns the

state variable x to the value one, while the second increases x by one unit for all x < X and returns

X when x = X.17 Because the transitions are deterministic A1,t+1 = A2,t+1 = 1, with A1,t+1 = {1}

and A2,t+1 = {xt + 1} . Also At+2 = 3, with At+2 = {1, 2, xt + 2}. It now follows that in this

example:

F1,t+1(A1,t+1) = F1,t+1(A2,t+1) =

[
1 0

]
, F2,t+1(A1,t+1) =

[
0 1

]
, F2,t+1(A2,t+1) =

[
0 0

]

Ht+1 =

 −1 1

0 −1

 or H−1t+1 =

 −1 −1

0 −1


Substituting these expressions into (17), and noting that Ωt+1(Aj,t+1, j) = ωt+1(x, j) because

K1t(A1,t+1) = K2t(A1,t+1) = 1, demonstrates that zero weight is placed on the non-renewal/non-

terminal action to achieve one-period dependence: ωt+1(x, 2)

ωt+1(x, 1)

 =

 −1 −1

0 −1


 1 −1

0 0


 1

1

 .
/ 1

1

 =

 0

0


The limitations of the guess and verify approach become evident when such a widely used class

of models in empirical analysis is revealed to have such a simple structure. The class of models

exhibiting even one-period finite dependence is much larger than terminal and renewal models, and

the method developed here provides a systematic way of discovering them.

3.3 Extension to ρ-period dependence with J choices

We now extend our framework to analyzing the existence of finite dependence for ρ > 1 and J ≥ 2.

Given specified decision weights between t+ 1 and t+ ρ− 1, two initial choices i and j in Equation

(11) relabeled as 1 and 2 for convenience, and an initial state xt, we provide a new set of necessary

and sufficient conditions for whether κt+ρ(xt+ρ+1|xt, 1) = κt+ρ(xt+ρ+1|xt, 2).

17More formally, f1,t+1(1|xt) = 1, for all t and xt, while for all t, f2,t+1(xt+1|xt) = 1 if xt < X and f2,t+1(X|X) = 1.

19



As we have shown, checking for one-period dependence reduces to solving a linear system of

equations. However the equations for determining finite dependence when ρ > 1 are highly nonlinear.

For example suppose J = 2, and we ask whether ρ = 2 for some given xt. Writing ωτ (xτ , j) ≡

ω2τ (xτ , j) and telescoping (5) two periods forward proves that κt+2(xt+3|xt, 2) = κt+2(xt+3|xt, 1) if

and only if:

X∑
xt+2=1

X∑
xt+1=1

f1,t+2(xt+3|xt+2)f1,t+1(xt+2|xt+1) [f1t(xt+1|xt)− f2t(xt+1|xt)] (18)

=

X∑
xt+2=1

X∑
xt+1=1

[f2,t+2(xt+3|xt+2)− f1,t+2(xt+3|xt+2)] [f2,t+1(xt+2|xt+1)− f1,t+1(xt+2|xt+1)]

× [ωt+2 (xt+2, 2)ωt+1 (xt+1, 2) f2t(xt+1|xt)− ωt+2 (xt+2, 1)ωt+1 (xt+1, 1) f1t(xt+1|xt)]

+
X∑

xt+2=1

X∑
xt+1=1

[f2,t+2(xt+3|xt+2)− f1,t+2(xt+3|xt+2)] f1,t+1(xt+2|xt+1)ωt+2 (xt+1, 1) f1t(xt+1|xt)

× [ωt+2 (xt+1, 2) f2t(xt+1|xt)− ωt+2 (xt+1, 1) f1t(xt+1|xt)]

+
X∑

xt+2=1

X∑
xt+1=1

f1,t+2(xt+3|xt+2) [f2,t+1(xt+2|xt+1)− f1,t+1(xt+2|xt+1)]

× [ωt+1 (xt+1, 2) f2t(xt+1|xt)− ωt+1 (xt+1, 1) f1t(xt+1|xt)]

Therefore two-period dependence holds if and only if there exist weights solving (18) for all xt+3 ∈ X .

Since products of weights appear in (18), nonlinear solution techniques are required to solve this

problem. More generally the equations for ρ-period dependence involve ρ-tuple products of weights.

We exploit the special structure of this nonlinear problem by dividing it into two parts, each

having a finite number of operations. The second part is a linear inversion problem that applies to

the period t+ ρ, essentially the same as the case described above when ρ = 1 and J = 2. The first

part delineates the subsets of nodes in X that can be reached by period t+ρ with nonzero weight by

a path from each of the two initial choices being considered. This part also involves a finite number

of steps. Having established existence, we can obtain weights satisfying (11) as a by-product.

Analogous to the one-period finite dependence case, for any τ ∈ {t+ 1, . . . , t+ ρ− 1} we say

xτ ∈ {1, . . . , X} is attainable by a sequence of decision weights from initial choice j ∈ {1, 2} if the
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weight on xτ is nonzero. Let Ajτ ∈ {1, . . . , X} denote the number of attainable states, and Ajτ ⊆

X the set of attainable states for the sequence beginning with choice j. Define Kτ−1(Ajτ ) as an Ajτ

vector containing the weights for transitioning to each of the Ajτ attainable states given the choice

sequence beginning with j and state xt. Denote Ωkτ (Ajτ , j) as a vector giving the weight placed

on choice k ∈ {2, . . . , J} for each of the Ajτ possible states at τ . Similarly let Aτ+1 ∈ {1, . . . , X}

denote the number of states that are attainable by at least one of the sequences beginning either

with choice 1 or 2, and denote by Aτ+1 ⊆ X the corresponding set. Given an initial state and choice,

we denote by Fkτ (Ajτ ) the first Aτ+1 − 1 columns of the Ajτ ×Aτ+1 transition matrix from Ajτ to

Aτ+1 when k is chosen at period τ . The matrix comprises elements fkτ (x′|x) for each x ∈ Ajτ and

x′ ∈ Aτ+1. Finally define the (Aτ+1−1)×(J−1) [A1τ +A2τ ] matrix Hτ , and the (J−1) [A1τ +A2τ ]

vector Dτ , respectively by:

Hτ ≡



F2τ (A2τ )− F1τ (A2τ )

...

FJτ (A2τ )− F1τ (A2τ )

F1τ (A1τ )− F2τ (A1τ )

...

F1τ (A1τ )− FJτ (A1τ )



′

, Dτ ≡



Ω2τ (A2τ , 2) ◦ Kτ−1(A2τ )

...

ΩJτ (A2τ , 2) ◦ Kτ−1(A2τ )

Ω2τ (A1τ , 1) ◦ Kτ−1(A1τ )

...

ΩJτ (A1τ , 1) ◦ Kτ−1(A1τ )



. (19)

The Aτ+1 system of equations to be solved can now be expressed as:

HτDτ = F1τ (A1τ )Kτ−1(A1τ )− F1τ (A2τ )Kτ−1(A2τ ) ≡ Kt+1 (20)

Note that one of the equations is redundant because if all other states have the same weight assigned

to them across the two paths then the last one must be lined up as well, implying that if the rank of

Hτ is Aτ+1−1 then finite dependence holds in ρ periods. More generally, again appealing to Hadley

(1961, pages 108-109), we obtain the following necessary and sufficient conditions for the existence

of a solution to this linear system.
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Theorem 2 Define the (Aτ+1 − 1) × {(J − 1) [A1τ +A2τ ] + 1} matrix H∗τ ≡
[

Hτ
...Kt+1

]
, obtained

by adding an extra column Kt+1 to Hτ . Finite dependence from xt with respect to choices i and j is

achieved in ρ = τ − t periods if and only if there exist weights from t+ 1 to τ − 1 such that the rank

of Hτ equals the rank of H∗τ .

There are an infinite number of weighting schemes, each of which might conceivably establish

finite dependence. This fact explains why researchers have opted for guess and verify methods when

designing models that exhibit this computationally convenient property. Our next theorem, however,

proved by construction in the Appendix, shows that an exhaustive search for a set of weights that

establish finite dependence can be achieved in a finite number of steps. The key to the proof is that

although the definition of Hτ does indeed depend on the weights, many sets of weights produce the

same A1τ and A2τ (and hence the same Aτ+1). Since the inversion of Hτ hinges on the attainable

states, and the sets of all possible attainable states is finite, a finite number of operations is needed

to establish whether a finite dependence path exists.

Theorem 3 For each τ ∈ {t+ 1, . . . , ρ} the rank of Hτ and H∗τ can be determined in a finite number

of operations.

Theorem 3 applies to any dynamic discrete choice problem described in Section 2. However

the number of calculations required to determine ρ-period dependence is specific to the number of

choices, J , in periods between t + 1 and t + ρ, the number of states in each of those periods, and

the transition matrices. As ρ increases, so too will the sets of possible attainable states, increasing

computational complexity in finding the finite dependence path. Increasing the number of choices,

J , also will increase the sets of possible attainable states. At the same time, increasing J gives

more control to line up the states. When examining finite dependence for a pair of initial choices,

the minimum ρ must be weakly decreasing as more choices are available as one could always set
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the weight on these additional choices to zero. Finally, the complexity of the state space does not

necessarily require more calculations to determine finite dependence for two reasons. First, it is only

the states that can be reached in ρ periods from the current state that are relevant for determining

finite dependence. Second, as the sets of attainable states increase, the researcher also has more

options for finding paths that exhibit finite dependence.

3.4 Finite dependence in games

The methods developed above are directly applicable to dynamic games off short panels, that is, after

modifying the notation with the (n) superscripts as appropriate. Nevertheless, establishing finite

dependence in games is more onerous. Finite dependence in a game is player specific; in principle

finite dependence might hold for some players but not for others. Furthermore, the transitions of the

state variables depend on the decisions of all the players, not just player n. Thus, finite dependence

in games is ultimately a property that derives not just from the game primitives, but is defined with

respect to an equilibrium. For this reason, games of incomplete information generally do not exhibit

one period finite dependence. If two alternative choices of n at time t affect the equilibrium choices

the other players make in the next period at t + 1 (or later), it is generally not feasible to line up

the states across both paths emanating from the respective choices by the beginning of period t+ 2.

The existence of finite dependence in games for a given player n can be established if two

conditions are met by the model and the equilibrium played out in the data. First, by taking a

sequence of weighted actions, player n can induce, say after ρ periods, the other players to match up

the distributions of x
(∼n)
t+ρ+1, conditional on x

(∼n)
t by following their equilibrium strategies, meaing

the distribution of x
(∼n)
t+ρ+1 does not depend on whether the sequence started with the choice j or k.

Whether this condition is satisfied or not depends on the reduced form transitions f
(∼n)
t

(
x
(∼n)
t+1 |xt

)
.

Second, given the distribution of states for player n at t + ρ from the two sequences, one period

finite dependence applies to x
(n)
t+ρ+1, meaning that the player is able to line up his own state after
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executing the weighted sequences across the two paths to line up the states of the other players.

This condition is determined by primitives alone, namely matrices formed from the f
(n)
jt

(
x
(n)
t+1

∣∣∣x(n)t

)
transitions.

3.5 Establishing finite dependence in games

From (11), finite dependence at τ for this class of games requires:

X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ (xτ , j)κ

(n)
τ−1(xτ |xt, j) (21)

=
X∑

xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ (xτ , i)κ

(n)
τ−1(xτ |xt, i)

We provide a set of sufficient conditions for (21) to hold that are relatively straightforward to check.

They are based on the intuition that from periods t + 1 through τ − 1 player n takes actions that

indirectly induce the other other players to align x
(∼n)
τ+1 through their equilibrium choices, and that

at date τ player n takes an action that aligns x
(n)
τ+1.

One necessary condition for τ dependence can be derived by summing (21) over the x
(n)
τ+1 out-

comes. Noting that:

X(n)∑
x
(n)
τ+1=1

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)[ J∑
k=1

ω
(n)
kτ (xτ , j) f

(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)]
κ
(n)
τ−1(xτ |xt, j)

=

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)[ J∑
k=1

ω
(n)
kτ (xτ , j)

] X(n)∑
x(n)=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)κ(n)τ−1(xτ |xt, j)

=

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
κ
(n)
τ−1(xτ |xt, j) (22)

we simplify the sum (21) over x
(n)
τ+1 using (22) to obtain:

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

) [
κ
(n)
τ−1(xτ |xt, j)− κ

(n)
τ−1(xτ |xt, i)

]
= 0 (23)

This proves that in our framework whether (23) holds or not depends on the weights assigned to n

in periods t+1 though τ−1, but not on the weights chosen in period τ. Furthermore, since the state
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transitions f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
for x

(n)
τ+1 do not depend on x

(∼n)
τ , whether the weights at τ attain finite

dependence next period is not affected by how they vary with x
(∼n)
τ . Accordingly, we now express

ω
(n)
kτ (xτ , j) as a function of x

(n)
τ only, writing ω

(n)
kτ

(
x
(n)
τ , j

)
.

A second necessary condition for τ period dependence is that, in conjunction with the weights

in periods preceding τ, the weights ascribed for period τ must line up the unconditional weight

distribution of x
(n)
τ+1 for the two initial choices. Noting that:

X(∼n)∑
x
(∼n)
τ+1

X∑
xτ=1

J∑
k=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

) [
f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
ω
(n)
kτ

(
x(n)τ , j

)
κ
(n)
τ−1(xτ |xt, j)

]

=
X∑

xτ=1

J∑
k=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ

(
x(n)τ , j

)
κ
(n)
τ−1(xτ |xt, j)

X(∼n)∑
x
(∼n)
τ+1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)

=

X∑
xτ=1

J∑
k=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

)
ω
(n)
kτ

(
x(n)τ , j

)
κ
(n)
τ−1(xτ |xt, j) (24)

we simplify the sum (21) over x
(∼n)
τ+1 using (24) to obtain:

0 =

X∑
xτ=1

J∑
k=1

f
(n)
kτ

(
x
(n)
τ+1

∣∣∣x(n)τ

) [
ω
(n)
kτ

(
x(n)τ , j

)
κ
(n)
τ−1(xτ |xt, j)− ω

(n)
kτ

(
x(n)τ , i

)
κ
(n)
τ−1(xτ |xt, i)

]
(25)

for all x
(n)
τ+1 ∈ X (n). Equation (25) is remarkably similar to an expression obtained for single agent

optimization problems found by substituting (5) into (11). Immediately before finite dependence

is obtained, n must align the weights on his own state variables for next period, so that the two

unconditional weight distributions of x
(n)
τ+1 for initial choices i and j match.

To derive a rank condition under which (23) holds, it is notationally convenient to focus on

the first two choices as before. Suppose (23) holds at τ + 1. Then there must be decision weights

at τ − 1 with the following property: the states that result in τ lead the other players to make

(equilibrium) decisions at τ so that each of their own states have the same weight across the two

paths at τ + 1. Formally, let A(n)
jτ−1 ⊆ X denote the set of attainable states at τ − 1 for the weight

sequence beginning with n choosing j ∈ {1, 2}. Let A(n)
τ ⊆ X denote the set of attainable states at

τ − 1 for the weight sequence beginning with n either choosing 1 or 2. Let A(∼n)
τ+1 ⊆ X (∼n) denote
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the states of the other players at τ + 1 given the sequence, when n begins by choosing either 1 or 2.

Let A
(∼n)
τ+1 denote the number of elements in A(∼n)

τ+1 . Let F
(n)
kτ−1

(
A(n)
jτ−1

)
denote the transition matrix

from A(n)
jτ−1 to A(n)

τ given choice k at time τ − 1 when competitors play their equilibrium strategies.

Let P
(∼n)
τ

(
A(n)
τ

)
denote the transpose of the first A

(∼n)
τ+1 − 1 columns of the transition matrix from

A(n)
τ to the set of competitor states A(∼n)

τ+1 . Finally define H
(∼n)
τ as:

H(∼n)
τ ≡ P(∼n)

τ

(
A(n)
τ

)



F
(n)
2,τ−1

(
A(n)

2,τ−1

)
− F

(n)
1τ−1

(
A(n)

2,τ−1

)
...

F
(n)
J,τ−1

(
A(n)

2,τ−1

)
− F

(n)
1τ−1

(
A(n)

2,τ−1

)
F
(n)
1,τ−1

(
A(n)

1,τ−1

)
− F

(n)
2τ−1

(
A(n)

1,τ−1

)
...

F
(n)
1,τ−1

(
A(n)

1,τ−1

)
− F

(n)
Jτ−1

(
A(n)

1,τ−1

)



′

(26)

Finite dependence requires weighting rules at τ−1 so that when the other players take equilibrium

actions at τ on the two paths the states of the other players are lined up at τ + 1. The effects of

these equilibrium actions on the state operate through P
(∼n)
τ

(
A(n)
τ

)
in (26). Equation (26) parallels

the expression for Hτ given in (19) for the games setting where the states to be matched at τ +1 are

the states of the other players rather then the state of the decision-maker. Following the same logic

as Theorem 2 yields sufficient conditions for finite dependence in games.18 The following theorem

combines the two conditions–one lining up the states of the other players and the other lining up

the player’s own states.

Theorem 4 If the rank of H
(∼n)
τ is A

(∼n)
τ+1 − 1, and there exists weights at τ such that (25) holds for

all x
(n)
τ+1, then ρ = τ − t period dependence is attained for initial choices 1 and 2.

18The knife edged case omitted here can also be derived in a similar manner to obtain necessary and sufficient

conditions similar to those given in Theorem 2.
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4 Applications

This section provides two illustrations, new to the literature, that apply our finite dependence

representation. The first is a job search model. Establishing finite dependence in a search model

would seem difficult given that there is no guarantee one will receive another job offer in the future

if an offer is turned down today and hence lining up, for example, future experience levels would

seem difficult. We show that our representation applies directly to this case. The second is a

coordination game where we apply the results of Theorem 4 to show that we can achieve two-period

finite dependence in a strategic setting.

4.1 A search model

The following simple search model shows why negative weights are useful in establishing finite de-

pendence, and uses the algorithm to exhibit an even less intuitive path to achieve finite dependence.

Each period t ∈ {1, . . . , T} an individual may stay home by setting d1t = 1, or apply for temporary

employment setting d2t = 1. Job applicants are successful with probability λt, and the value of the

position depends on the experience of the individual denoted by x ∈ {1, . . . , X}. If the individual

works his experience increases by one unit, and remains at the current level otherwise. The pref-

erence primitives are given by the current utility from staying home, denoted by u1 (xt) , and the

utility from working, u2 (xt) . Thus the dynamics of the model arise only from accumulating job

experience, while nonstationarities arise from time subscripted offer arrival weights.

Constructing a finite dependence path The guess and verify approach is useful for verifying

this model satisfies one-period finite dependence: we simply construct two paths that generate the

same probability distribution of xt+2 conditional on xt. Denote ωτ (xt, j) as the weight placed on
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action 2 at time τ given initial choice j. Then set:

ωt+1(xt, 2) = ωt+1(xt + 1, 2) = 0, ωt+1(xt, 1) = λt/λt+1

The distribution of xt+2 from following either path is the same: xt+2 = xt with probability

f2t(xt|xt) = 1− λt, and xt+2 = xt + 1 with probability f2t(xt + 1|xt) = λt.

Applying the finite dependence path, the difference in conditional value functions can then be

expressed as:

v2t(xt)− v1t(xt) = λt [u2(xt)− u1(xt) + βu1t(xt + 1)− βu2t(xt)] (27)

+β

[
λtψ1 [pt+1(xt + 1)] + λt

(
1

λt+1
− 1

)
ψ1 [pt+1(xt)]−

λt+1

λt
ψ2 [pt+1(xt)]

]

Note that if λt > λt+1 then ωt+1(xt, 1) > 1, demonstrating that negative weights and weights

exceeding one can be used to establish finite dependence.

Applying Theorem 2 While Section 4.1 provides a constructive example of forming a finite

dependence path, it is also useful to show how the results from Section 3.2 apply. We now use the

results from Section 3.2 to derive another finite dependence path.

To do so, we first define relevant terms in Equation (16). A1,t+1 and A2,t+1 are given by {xt}

and {xt, xt + 1}. If the individual stays home the state remains unchanged, and if the individual

applies for temporary employment he may be employed, or not. Thus K1t(A1,t+1) and K2t(A2,t+1)

are [1] and [ 1− λ λ ]′. The relevant transition matrices are given by:

F1,t+1(A1,t+1) =

[
1 0

]
, F1,t+1(A2,t+1) =

 1 0

0 1



F2,t+1(A1,t+1) =

[
1− λt+1 λt+1

]
, F2,t+1(A2,t+1) =

 1− λt+1 λt+1

0 1− λt+1


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The last column, giving the transitions to state xt + 2, is omitted because if the probabilities are

aligned in all but one attainable state, then the remaining probability must match up as well.

The system of equations in (16) has two equations (one for the probability of state xt; another

for the probability of state xt+1), plus three choice variables. The three choice variables are the

weights on the probability of choosing work conditional on either (i) work in the first period but

no job (xt+1 = xt), (ii) work in the first period and obtaining a job (xt+1 = xt + 1), and (iii) not

working in the first period (xt+1 = xt). We then have the following expression for the first term on

the left-hand-side of (16): F2t+1(A2,t+1)− F1t+1(A2,t+1)

F1t+1(A1,t+1)− F2t+1(A1,t+1)


′

=

 −λt+1 0 λt+1

λt+1 −λt+1 −λt+1

 (28)

To reduce the system to two equations and two unknowns, we set the weight on looking for a job

to zero conditional on being in state xt at t + 1 and having chosen not to look for work at t. The

last column of (28) can then be eliminated. Noting that: −λt+1 0

λt+1 −λt+1


−1

=

 −1/λt+1 0

−1/λt+1 −1/λt+1


the solution to the system, given ωt+1(xt, 1) = 0, is then: ωt+1(xt, 2)

ωt+1(xt + 1, 2)

 =

 −1/λt+1 0

−1/λt+1 −1/λt+1


 λt

−λt

 .
/ 1− λt

λt

 =

 −λt
(1−λt)λt+1

0


Finite dependence can then be achieved by setting:

ωt+1(xt, 1) = ωt+1(xt + 1, 2) = 0, ωt+1(xt, 2) = −λt [(1− λt)λt+1]
−1 .

Here the path that begins with not looking for work involves not looking for work in period 2 either.

By placing negative weight on looking for work conditional on (i) looking for work in period t and

(ii) not finding work at period t, we can cancel out the gains from successful search in period t.

Hence we arrive at the state xt along both choice paths.
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4.2 A coordination game

Applications of finite dependence in the empirical literature on games are scarce. One exception are

models with exit decisions, which have the terminal state property. Although finite dependence is

usually not exploited in these models (but see Beauchamp, 2015 and Mazur, 2014), Collard-Wexler

(2013), Dunne et al. (2013), and Ryan (2012) all exhibit the finite dependence property that could

be used to simplify estimation.

Finite dependence holds for a much broader class of games than those with terminal choices.

To illustrate this point, we analyze a simple example of a two player coordination game. Each

player n ∈ {1, 2} chooses whether or not to compete in a market at time t, competing by setting

d
(n)
2t = 1, not competing by setting d

(n)
1t = 1. In this model xt ≡

(
x
(n)
t , x

(∼n)
t

)
and x

(n)
t = d

(n)
2,t−1, so

the state variable transition matrix is deterministic and time invariant. Conditional on the lagged

participation of the other player, we assume an individual’s choices depend on his own lagged

partcipation, implying p
(n)
2,t+1(1, d

(∼n)
2t ) 6= p

(n)
2,t+1(2, d

(∼n)
2t ).19 This assumption can be tested with

data generated from an equilibrium for the game. Summarizing, the dynamics of the game arise

purely from the effect of decisions made by both players in the previous period on current payoffs.

Nonstationarity arises from the flow payoffs that may depend on time and hence the corresponding

choice probabilities.

This model exhibits two period dependence. Let ω
(n)
t+2(x

(n)
t+2, j) denote the weight for action 2

given x
(n)
t+2 ∈ {1, 2} and action j ∈ {1, 2} taken at time t.20 To satisfy (25) we set the t + 2 choice

weight to be the same across both paths. For example let ω
(n)
t+2(x

(n)
t+2, j) = 1 implying x

(n)
t+3 = 1 for

both paths. All that remains is to find two weighting sequences for n, one for each initial choice at t,

such that when the other player makes his equilibrium choice at t+ 2, the distribution of d
(∼n)
t+2 , and

19Restating this assumption as it applies to the other player: p
(∼n)
2,t+1(d

(n)
2t , 1) 6= p

(∼n)
2,t+1(d

(n)
2t , 2).

20Recall from our general discussion of finite dependence in games that the choice of n at t+ 2 has no effect on the

other player’s choice at that time because it is not one of his state variables at t+ 2.
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hence the distribution of x
(∼n)
t+3 , is the same for both sequences. In this model the rank condition for

H
(∼n)
τ is easy to check because x

(∼n)
t+3 ≡ d

(n)
2,t+2 only takes two values. Another parsimonious feature

of this model is that the initial choice of a player at t is by definition identical to his own contribution

to the state variable in t + 1; in symbols ω
(n)
t+1 (xt+1, j) ≡ ω

(n)
t+1

((
d
(n)
2t , d

(∼n)
2t

)
, d

(n)
2t

)
. To eliminate

this notational redundancy we now define ω
(n)
t+1(xt+1) ≡ ω

(n)
t+1(xt+1, j). Theorem 5 establishes two

period dependence by specifying a ω
(n)
t+1(xt+1), that in conjunction with setting ω

(n)
t+2(x

(n)
t+2, j) = 1,

achieves finite dependence.

Theorem 5 The coordination game exhibits two period dependence for all xt. For i ∈ {1, 2} define:

Ci ≡ p(∼n)2,t+2(2, 1)− p(∼n)2,t+2(1, 1) + p
(∼n)
2,t+1(2, i)

[
p
(∼n)
2,t+2(2, 2) + p

(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(2, 1)− p(∼n)2,t+2(1, 2)

]
If C1 = 0 then C2 6= 0. For Ci 6= 0 set ω

(n)
t+1(xt+1) = 0 for all xt+1 6= (2, i) and:

ω
(n)
t+1(2, i) = P

(∼n)
t+2

(
A(n)
t+2

) F
(n)
1,t+1(A

(n)
1,t+1)

−F
(n)
1,t+1(A

(n)
2,t+1)


′

.
/[
p
(∼n)
2t (xt)Ci

]
.

5 Conclusion

CCP methods provide a cheap way of estimating dynamic discrete choice models in both single-

agent and multi-agent settings. This paper precisely delineates and expands the class of models

that exhibit the finite dependence property used in CCP estimators, whereby only a-few-period-

ahead conditional choice probabilities are used in estimation. Our approach applies a wide class

of problems lacking stationarity, and is free of assumptions about the structure of the model and

the beliefs of players regarding events that occur after the (short) panel has ended. For example

these methods enable estimation of nonstationary infinite horizon games even when there are no

terminal or renewal actions. Finally, our analysis leaves several questions unanswered: What are the

computational benefits and costs associated with implementing this algorithm to determine finite

dependence in situations where ”guess and verify” is infeasible? Since there is no presumption that

31



a unique set of weights exists when finite dependence hold, a point illustrated in the search example,

which set of weights should be used in estimation?21 We defer these topics to future research.

6 Appendix: Proofs

Proof of Theorem 1. With (bounded) negative weights the finite horizon results of Theorem

1 of Arcidiacono and Miller (2011) is easily adapted, since the proof of whether the positivity or

negativity of the weights is not used in that proof.

Proof of Theorem 3. Denote by A ≡
{
x
(1)
A , . . . , x

(A)
A

}
where x

(a)
A ∈ X for all a ∈ {1, . . . , A}.

Thus A∈ S, the set containing 2X elements of all subsets of X . Also define the set A attains at τ

by:

B ≡
{
x
(b)
B ∈ X such that fjτ (x

(b)
B |x) 6= 0 for some x ∈ A and some j = 1, . . . , J

}
Thus B =

{
x
(1)
B , . . . , x

(B)
B

}
for some B ≤ X. For each a ∈ {1, . . . , A} define the (J − 1) × 1 weight

vector:

ωτ

(
x
(a)
A

)
=
(
ω1τ

(
x
(a)
A

)
, . . . , ωJ−1,τ

(
x
(a)
A

))′
where

∣∣∣ωjτ (x(a)A )∣∣∣ <∞ and ωJτ

(
x
(a)
A

)
≡ 1−

∑J−1
j=1 ωjτ

(
x
(a)
A

)
. Let KA ≡

(
K(1)
A , . . . ,K(A)

A

)′
denote

an A× 1 weight vector over the states in A, that is satisfying
∑A

x=1K
(a)
A = 1 with

∣∣∣K(a)
A

∣∣∣ <∞ and

K(x)
A 6= 0. We also define:

K(b)
B ≡

A∑
a=1

J∑
j=1

fjτ (x
(b)
B

∣∣∣x(a)A )ωjτ

(
x
(a)
A

)
K(a)
A

and note that:

B∑
b=1

K(b)
B =

B∑
b=1

A∑
a=1

J∑
j=1

fjτ (x
(b)
B

∣∣∣x(a)A )ωjτ

(
x
(a)
A

)
K(a)
A =

A∑
a=1

J∑
j=1

ωjτ

(
x
(a)
A

)
K(a)
A =

A∑
a=1

K(a)
A = 1 (29)

21Weighting future utility terms differently affects the asymptotic covariance matrix of the estimator, as well as its

finite sample properties. Consequently choosing amongst alternative weighting schemes that attain finite dependence

is application specific.
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Depending on KA, and also the choice of ωτA ≡
(
ωτ

(
x
(1)
A

)
, . . . , ωτ

(
x
(A)
A

))′
, some elements of

KB ≡
(
K(1)
B , . . . ,K(B)

B

)′
may be zero. We say that A reaches A∗ ⊆ A′ at τ for the vector weighting

KA if, for some choice of ωτA, every element in A∗ is attained (has nonzero weight), and every

element in the complement of A∗ is not attained (has zero weight).

Theorem 2, and its proof in the text, shows that only a finite number of operations are required

to determine whether or not finite dependence dependence can be achieved in one period from two

given sets A1,t+ρ and A2,t+ρ. In particular, it is evident from the construction of Hτ , that the

operations do not depend on the ωτ,A1,t+ρ and ωτ,A2,t+ρ , the respective weights on elements in A1,t+ρ

and A2,t+ρ. Given j ∈ {1, 2}, and a sequence of weights defined from t+1 to t+ρ, a unique sequence

of sets is determined: say {Ajτ}ρτ=t+2. Although there are an uncountable number of paths, since

Ajτ ∈ S and S contains (only) 2X elements, there are at most 2(ρ−1)X sets that any weight sequence

can successively reach, from Aj,t+1 ≡ {x ∈ X : fjt(x|xt) > 0} up to and including Aj,t+ρ. Therefore

the proof is completed by showing that a finite number of operations suffice to determine whether

or not a given A ⊆ A′j,τ+1can be reached from any Ajτ ∈ S, for all possible (nonzero) weights KA.

To determine whether A reaches A∗ at τ we extend similar arguments given in the text for

checking whether ρ = 2 in the special case where J = 2. Without loss of generality we focus on

the case where A∗ is might be reached because the first A∗ elements of KA∗ are nonzero and the

remaining B∗ − A∗ are zero. (The other cases are covered by a reordering of the states.) Thus

KB ≡
(
K(1)
B , . . . ,K(B)

B

)′
is a weighting for A∗ if and only if:

K(b)
B =



1−
∑A∗

b=2K
(b)
B for b = 1

any nonzero value for b ∈ {2, . . . , A∗} subject to the constraint
∑A∗

b=2K
(b)
B 6= 1

0 for b ∈ {A∗ + 1, . . . , B}

(30)

The existence of a solution to an unconstrained linear system, comprising B − 1 equations in

(J − 1)A unknowns, determines whether A reaches A∗ at τ or not. The unknown variables in the
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linear system are the A choice weight vectors ωτ

(
x
(a)
A

)
, each of dimension J−1. The B−1 equations

correspond to the nonzero weights placed on the states
{
x
(2)
B , . . . , x

(A∗)
B

}
and the zero weighting

placed on the last B − A∗ states, which belong to B but not A∗. All choice weights satisfying the

equations corresponding to
{
x
(2)
B , . . . , x

(A∗)
B

}
also satisfy the first state in B by (29)and (30).

Given K(b)
B satisfying (30) , a solution to this linear system exists if there exists A choice weight

vectors ωτ

(
x
(a)
A

)
for each b ∈ {2, . . . , B} solving:

K(b)
B =

A∑
a=1

fJτ (x
(b)
B

∣∣∣x(a)A )K(a)
A +

A∑
a=1

J−1∑
j=1

[
fjτ (x

(b)
B

∣∣∣x(a)A )− fJτ (x
(b)
B

∣∣∣x(a)A )
]
ωjτ

(
x
(a)
A

)
K(a)
A (31)

Let Fjτ (A) denote the A×(B − 1) transition matrix for A into all but the first states in B for choice

j ∈ {1, 2, . . . , J − 1}. Define [KA ◦ ωτ (A)] as the A (J − 1)× 1 vector formed from the element-by-

element product K(a)
A ωjτ

(
x
(a)
A

)
. Denote the (B − 1)×A (J − 1) concatenated matrix of transitions

by:

Fτ (A)′ ≡
[
F1τ (A)′ · · ·FJ−1,τ (A)′

]

=


f1τ (x

(2)
B |x

(1)
A ) · · · f1τ (x

(2)
B |x

(A)
A )

...
. . .

...

f1τ (x
(B)
B |x

(1)
A ) · · · f1τ (x

(B)
B |x

(A)
A )

· · ·

· · ·

· · ·

fJ−1,τ (x
(2)
B |x

(1)
A ) · · · fJ−1,τ (x

(2)
B |x

(A)
A )

...
. . .

...

fJ−1,τ (x
(B)
B |x

(1)
A ) · · · fJ−1,τ (x

(B)
B |x

(A)
A )


Defining K∗B as a (B − 1)× 1 vector formed from all but the first element of KB satisfying (30) then

(31) may be expressed in matrix notation as:

K∗B = FJτ (A)′KA +
[
Fτ (A)′ − FJτ (A)′

]
[KA ◦ ωτ (A)] (32)

Appealing to Hadley (1961, pages 108-109), for a given K∗B, a solution to (32) in [KA ◦ ω∗τ (A)]

exists if and only if the rank of
[
Fτ (A)′ − FJτ (A)′

]
equals the rank of the augmented matrix formed

by adding the column
[
K∗B − FJτ (A)′KA

]
to
[
Fτ (A)′ − FJτ (A)′

]
. By construction the augmented

matrix either has the same rank as, or one plus the rank of
[
Fτ (A)′ − FJτ (A)′

]
. Determining the

rank of a finite dimensional matrix requires only a finite number of operations. Since each of the
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finite number of steps described above involves a finite number of operations, the theorem is proved.

Proof of Theorem 4. The proof follows steps similar to that of Theorem 2. Define K
(n)
τ−2

(
A(n)
jτ−1

)
as an A

(n)
j,τ−1 vector containing the probabilities of transitioning to each of the A

(n)
jτ−1 attainable states

given the choice sequence beginning with j by player n and state xt. Denote Ω
(n)
k,τ−1

(
A(n)
j,τ−1, j

)
as a

vector giving the weight placed on choice k ∈ {2, . . . , J} by player n for each of the A
(n)
j,τ−1 possible

states at τ − 1. Let D
(n)
j,τ−1

(
A(n)
j,τ−1

)
be a (J − 1)A

(n)
j,τ−1 vector defined by:

D
(n)
j,τ−1

(
A(n)
j,τ−1

)
=


Ω
(n)
2,τ−1

(
A(n)
j,τ−1, j

)
◦ K

(n)
τ−2

(
A(n)
j,τ−1

)
...

Ω
(n)
J,τ−1

(
A(n)
j,τ−1, j

)
◦ K

(n)
τ−2

(
A(n)
j,τ−1

)


where ◦ refers to element-by-element multiplication. The matrix representation of the finite depen-

dence condition given in (23) for state x
(∼n)
τ+1 is then given by the A

(∼n)
τ+1 system of equations:

H(∼n)
τ

 D
(n)
2,τ−1

(
A(n)

2,τ−1

)
D
(n)
1,τ−1

(
A(n)

1,τ−1

)
 = P(∼n)

τ

(
A(n
τ

) F
(n)
1,τ−1

(
A(n)

1,τ−1

)
−F

(n)
1,τ−1

(
A(n)

2,τ−1

)

′  K

(n)
τ−2

(
A(n)

1,τ−1

)
K
(n)
τ−2

(
A(n)

2,τ−1

)
 (33)

Note that one of the equations is redundant because if all other competitor states have the same

weight assigned to them across the two paths then the last one must be lined up as well. Hence if

the rank of H
(∼n)
τ is A

(∼n)
τ+1 − 1 there exists decisions weights such that the distribution of x

(∼n)
t+ρ is

the same for both initial choices. If in addition player n can select weights at τ + ρ such that the

distribution of x
(n)
t+ρ is the same for both initial choices then finite dependence is attained.

Proof of Theorem 5. In this game each player n ∈ {1, 2} controls two states, namely the choices

of the previous period ”in” or ”out”, so from (33) two period dependence requires a solution to:

H
(∼n)
t+2

 Ω
(n)
2,t+1(A

(n)
2,t+1, 2) ◦ K2t(A(n)

2,t+1, 2)

Ω
(n)
2,t+1(A

(n)
1,t+1, 1) ◦ K1t(A(n)

1,t+1, 1)

 = P
(∼n)
t+2

(
A(n)
t+2

) F
(n)
1,t+1(A

(n)
1,t+1)

−F
(n)
1,t+1(A

(n)
2,t+1)


′  K1t(A(n)

1,t+1)

K2t(A(n)
2,t+1)


(34)
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where the definition of H
(∼2)
τ given in (26) specializes to:22

H
(∼n)
t+2 ≡ P

(∼n)
t+2

(
A(n)
t+2

) F
(n)
2,t+1(A

(n)
2,t+1)− F

(n)
1t+1(A

(n)
2,t+1)

F
(n)
1,t+1(A

(n)
1,t+1)− F

(n)
2t+1(A

(n)
1,t+1)


′

Ω
(n)
2,t+1(A

(n)
2,t+1, j) =

[
ω
(n)
t+1(j, 2), ω

(n)
t+1(j, 1)

]
K2t(A(n)

2,t+1) = K1t(A(n)
2,t+1) =

[
p
(∼n)
2t (xt) p

(∼n)
1t (xt)

]′
P
(∼n)
t+2

(
A(n)
t+2

)
=

[
p
(∼n)
2,t+2(2, 2) p

(∼n)
2,t+2(2, 1) p

(∼n)
2,t+2(1, 2) p

(∼n)
2,t+2(1, 1)

]

 F
(n)
1,t+1(A

(n)
1,t+1)

−F
(n)
1,t+1(A

(n)
2,t+1)


′

=



0 0 0 0

0 0 0 0

p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1) −p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(1, 2)

p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1) −p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1)



 F
(n)
2,t+1 (A2,t+1)− F

(n)
1,t+1 (A2,t+1)

F
(n)
1,t+1 (A1,t+1)− F

(n)
2,t+1 (A1,t+1)


′

=



p
(∼n)
2,t+1(2, 2) p

(∼n)
2,t+1(2, 1) −p(∼n)2,t+1(1, 2) −p(∼n)2,t+1(1, 1)

p
(∼n)
1,t+1(2, 2) p

(∼n)
1,t+1(2, 1) −p(∼n)1,t+1(1, 2) −p(∼n)1,t+1(1, 1)

−p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(2, 1) p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1)

−p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1) p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1)


(35)

Substituting the expressions above into the left hand side of (34) yields:

p
(∼n)
2,t+2(2, 2)

p
(∼n)
2,t+2(2, 1)

p
(∼n)
2,t+2(1, 2)

p
(∼n)
2,t+2(1, 1)



′ 

p
(∼n)
2,t+1(2, 2) p

(∼n)
2,t+1(2, 1) −p(∼n)2,t+1(1, 2) −p(∼n)2,t+1(1, 1)

p
(∼n)
1,t+1(2, 2) p

(∼n)
1,t+1(2, 1) −p(∼n)1,t+1(1, 2) −p(∼n)1,t+1(1, 1)

−p(∼n)2,t+1(2, 2) −p(∼n)2,t+1(2, 1) p
(∼n)
2,t+1(1, 2) p

(∼n)
2,t+1(1, 1)

−p(∼n)1,t+1(2, 2) −p(∼n)1,t+1(2, 1) p
(∼n)
1,t+1(1, 2) p

(∼n)
1,t+1(1, 1)





ω
(n)
t+1(2, 2)p

(∼n)
2t (xt)

ω
(n)
t+1(2, 1)p

(∼n)
2t (xt)

ω
(n)
t+1(1, 2)p

(∼n)
2t (xt)

ω
(n)
t+1(1, 1)p

(∼n)
2t (xt)


(36)

22Since matching the weight on one state automatically matches the weight on the other, we can eliminate the last

row of P
(∼n)
t+2

(
A(n)
t+2

)
.
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Since p
(∼n)
2t (xt) > 0 we can establish two period dependence by equating (36) with the right hand

side of (34) and solving for the unknowns. By inspection (36) is 1 × 1, and (34) reduces to a

single equation, with four unknowns that conform to the 1× 4 row vector H
(∼n)
t+2 . We consider two

possibilities, labeled i ∈ {1, 2}. Both set three of the four unkowns to zero, either the first element in

in vector on the far right of (36) or the second. Setting ω
(n)
t+1(xt+1) = 0 for all xt+1 6= (2, i), making

use of the fact that p
(∼n)
1,t+1(2, 2) = 1− p(∼n)2,t+1(2, 2), and appealing to the definition of Ci given in the

theorem, simplifies (36) to Cip
(∼n)
2t (xt)ω

(n)
t+1(2, i).

To show that C2 6= 0 if C1 = 0 and complete the proof of the theorem, note:

C2 − C1 =
[
p
(∼n)
2,t+1(2, 2)− p(∼n)2,t+1(2, 1)

] [
p
(∼n)
2,t+2(2, 2)− p(∼n)2,t+2(2, 1) + p

(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(1, 2)

]
(37)

If the second bracketed term is zero, then:

p
(∼n)
2,t+2(2, 1)− p(∼n)2,t+2(2, 2) = p

(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(1, 2)

⇒ C1 = C2 = p
(∼n)
2,t+2(1, 1)− p(∼n)2,t+2(1, 2) 6= 0

because by assumption p
(∼n)
2,t+2(1, 1) 6= p

(∼n)
2,t+2(1, 2). If the second bracketed term is nonzero, then

C2 6= C1 by (??) because p
(∼n)
2,t+1(2, 1) 6= p

(∼n)
2,t+1(2, 2). Therefore C2 6= 0 if C1 = 0. Given Ci 6= 0,

we set ω
(n)
t+1(xt+1) = 0 for all xt+1 6= (2, i) and solve for ω

(n)
t+1(2, i) by substituting (37) into (34) as

indicated in the statement of the theorem.
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