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Introduction
The solution to the game predicts the outcomes of experimental subjects playing

the game in a classroom laboratory. The conduct of the experiment is the data
generation process. Measuring and interpeting the deviations observed in data from
the predictions of the theory is the province of statistical inference. The tools of
statistics provide a metric for accepting or rejecting the behavioral hypotheses put
forward. The more closely the experimental outcomes mimic the predictions, the
greater confidence we place in the theory that yields them. This is the reason for
forming statistics to test and evaluate whether the behavior of the experimental
subjects conforms to the solution derived for the game. When there is a unique
solution to the game, it provides the benchmark data generating process against
which all violations should be considered. When there are multiple solutions to the
model, the process of testing them is complicated by the fact that the experimental
subjects playing in a game together might not coordinate their behavior around the
same solution. In any event, we might be more concerned about certain features of
the data than others, and should accordingly formulate tests that conform as closely
as possible to the questions we seek to answer.

This text routinely applies the theory of probability and statistics to experimental
data to evaluate the solutions derived for the games. This chapter has two purposes,
to provide an introduction to displaying, summarizing and analyzing data collected
from experimental sessions, and to serve as a reference for the remaining chapters in
the book. It reviews hypotheses tests and estimation methods for the parameters of
interest implied by the solution(s) to the game. These hypotheses tests and
parameters are the basis for our enquiry into how the subjects for experiment played
the games, focusing especially on how closely actual play conforms to the predictions
of the solution. In this section we use several simple games to demonstrate how this
exercise can be conducted.

Data has different forms depending on the type of the design of the experiment. It
is convenient to divide the chapter into two parts that reflect the characteristics of data.
There are two types of data, categorical data or numerical data. Many types of
experiments result in qualitative rather than quantitative response variables, so that
responses can be classified but not quantified. Data from those experiments consist of
count or number of observations falling in each of the response categories included in
the experiment. numerical data, on the other hand, can be ordered.

Categorical Data
We begin with our discussion of an experiment.

1.1. A Description of the Experiment
Many experiment result in enumerative (or count) data. For example, based on the

decisions that subjects made in the experiment presented in Figure 1 there are three
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possibilities how the game will end: 1) In enterpeneur decides to ignore idea and
continue office work the game will end in the box numbered 3; 2) if the enterpreneur
decided to expend effort seeking funding for project then venture capitalist has a
chance to respond and if venture capitalist selected not to fund the project then the
number associated with this decision is 4 in Figure 1; 3) if venture capitalist decided to
fund the project then it all depends what happens with the project (i.e. 0.5 chance the
project falls and 0.5 chance the project is successfull). We are only interested in
subjects decisions and not how the nature draws between success and failure.
Therefore we are interested how many times number 5 is visited.

Figure 2.1
Or we might be interested in studiying the reaction of responders to the proposals

made by the players in the bargaining game. The responder can accept or reject the
proposal. In this case the experiment will yield two counts, indicating the number of
subjects falling in each of the reaction classes.

Write more examples.......

The illustration in the proceding paragraph exhibits the following characteristics
that define a multinomial experiment.

The Characteristics of a Multinomial Experiment
1. The experiment consists of n identical trials (rounds).
2. The outcome of each trial (round) falls into one of the k classes or cells.
3. The probability that the outcome of a single trial will fall in a particular cell, for

example cell i is pi (i1, 2,...,k)

Displaying Categorical Data:
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The Characteristics of a Multinomial Experiment

1. The experiment consists of n identical trials (rounds).
2. The outcome of each trial (round) falls into one of the k classes or cells (i.e.

results at the end of the tree).
3. The probability that the outcome of a single trial will fall in a particular cell, for

example cell i is pi (i1, 2,...,k) and remains the same from trail to trail. Note that 0 ≤
pi ≤ 1 for all i, and

p1  p2  p3 . . .pk  1
4. Trial are independent.
5. The experimenter is interested in n1,n2,n3, . . . ,nk, where ni i  1,2, . . . ,k is equal

to the number of trails in which the outcome falls in cell i. Note that
n1  n2  n3 . . .nk  n.

A Test of Hypothesis Most commonly used in the Experiments using
Categorical Data

Estimating a Binomial Proportion
When choices in the experimental design are descrite ( i.e. for example

representation of a game in the extensive or in the strategic form) and the solution of
the game is unique then this is an example of the binominal experiment. Estimating
the proportion of subjects that are playing according to the equlibrium prediction is a
problem that requires the estimation of a binomial parameter p. The estimator p,
denoted by the simbol

^
p, is the total number x of successses (i.e. total number of times

subjects played according to the equlibrium prediction) divided by the total number n of
trials:

^
p x

n
where x is the number of successes in n trials. By "best" we mean that

^
p is

unbiased and possesses a smaller variance than other possible estimators.
The estimator

^
p possesses a sampling distribution that can be approximated by a

normal distribution because of the Central Limit Theorem. It is an unbiased estimator
of the population proportion p, with mean and standard deviation:

Mean and Standard Deviation of ^
p
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E
^
p  p

 ^
p 

pq
n

Point Estimator for p

Estimator:
^
p x

n

Margin of error: 1.96 ^
p  1.96 pq

n

Estimated margin of error: 1.96
^
p

^
q
n

The corresponding large-sample confidence interval with confidence coefficient
(1-) is:

A(1-) 100% Confidence Interval for p

^
p− z/2

^
p

^
q
n
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Figure 1: 2 statistics for Armageddon in extensive form
A random sample of n48 games produced x16 playes that ended in terminal

node 17 (solution to this game). Estimate the fraction of the experimental population
ending in the node that is predicted by the theory and find the estimated margin error.

The point estimate is:
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^
p 17

48  0.362

and the margin of error is

1.96 ^
p  1.96 pq

n ≈ 1.96 0.362 ∗ 0.638
48  0.137

A 95% confidence interval for p would be

^
p− 1.96

^
p

^
q
n or 0.362 − 1.96 ∗ 0.0049

Thus, we would estimate that p lies in the interval 0.225 to 0.499 with confidence
coefficient 0.95. Notice that 0.362 − 0.137 includes proportions that are smaller than
0.5. Therefore we can conclude that subjects did not play according to the theoretical
prediction.

Test if the estimated
^
p is significantly different from the predicted value of 1. Check

this!!!!!!!
Chi- Square Test

The 2 test gives a goodness-of-fit measure for the observed and theoretical
probability distribution (discrete variables) or densities (continuous). General formulae
is:

2 
i1

k

∑ ni − Eni2

Eni

for discrete variables. ni means number of obsered occurances in a class and Eni
means the number of predicted occurances.

For continuous variables the 2 test has the following representation:

2 
i1

k

∑ ni − npi2

npi

We also have to determine the degrees of freedom associated with the appropriate
chi-square distribution. Furthermore, we must determine whether the rejection region
for the test is one-tailed or two-tailed (check when each).

To determine the appropriate number of degrees of freedom we state the principle
involved in order to understand why the number of degrees of freedom changes with
various applications. The principle states that the appropriate number of degrees of
freedom (d.f.) equals the number of cells k less 1 d.f. for each independant linear
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restriction placed on the observed cell counts. For example, one linear restriction is
always present because the sum of the cell counts must equal n; that is:

n1  n2  n3 . . .nk  n
Other restrictions will be introduced for some application because of the necessity

for estimating unknown parameters required in the calculation of the expected cell
frequencies or because of the method in which the experiment was conducted and the
data collected.

The 2 test gives a goodness-of-fit measure for the observed and theoretical
probability distribution (discrete variables) or densities (continuous). General formulae
is:

2 
classes

∑ nobs − nexp
nexp

for discrete variables. nobs means number of obsered occurances in a class and
nexp means the number of predicted occurances.

For continuous variables the 2 test has the following representation:

2 
classes

∑ nobs − npdata in class
npdata in class

Many times we count the number of occurances of an event. For example consider
the following two games. The first game is represented by its extensive form and
depicted in Figure 3.1.

To test whether the groups are behaving the same way. Considering the following
contingency table constructed from the outcomes, we seek to test whether both
groups of subjects behaved the same way.

 Terminal 
node 3; 
Up/right or 
down/right 

Terminal 
node 4; 
Up/left 

Terminal node 6 and 
Terminal node 7; 
Down/left 

Total 

Extensive  14 6 2 + 3 = 5 
 

25 

Strategic 
 

1 2 22 25 

Total 15   (0.3) 8  (0.16) 27  (0.54) 50 
 

Let H0 be the hypothesis that the proportions in the three possible ways the games
can end is the same in extensive and in the strategic form. Of 50 completed sessions
15/50 or 30% ended up in Terminal node 3 (i.e. up/right or down/right); 8/50, or 16%
ended in Terminal node 4 and 27/50, or 54% ended either in terminal node 6 or 7.
There are 25 completed sessions in extensive form. Therefore 30% of 25 sessions or
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7.5 sessions should end in terminal node 3. Similarly 16% of 25 or 4 should end in
Terminal node 4 and 54% or 13.5 sessions should end in node 6 or 7. Under H0 the
same proportion should hold for the strategic form.

To determine whether the differences are more than could reasonably be due to
chance alone, we use a chi-square test. The test statistic is:

2 ∑ [Observed-Expected)2/Expected]
 (14 - 7.5)2/7.5  (6 - 4)2/4  (5 – 13.5)2/13.5  (1 - 7.5)2/7.5
 (2 - 4)2/4 (22 - 13.5)2/13.5
 23.97
The number of degrees of freedom is computed as follows: Let r  the number of

rows in the table. There are two: extensive form and strategic form. Let c  the number
of columns. There are three: Terminal node 3, terminal node 4 and terminal node 6 or
7. The number of degrees of freedom is (r-1) (c-1)  (2-1)(3-1)2. For a 0.005, CDF
gives 7.88. Our observed value is much larger than this. We conclude that subjects
playing extensive form played differently from the subjects who played the strategic
form.

The sample for the extensive form game was further split over the first and second
part of the game session. In the 12 completed sessions in the first half:

· 1 terminated at node 3
· 6 at node 4
· 2 at node 6
· 3 at node 7
The test follows the same procedure.

A Test of Hypothesis Concerning Specified Cell Probabilities
The simplest hypothesis concerning the cell probabilities is one that specifies

numerical values for each cell. For example, in the Armageddon experiment in the
extensive form, subjects deviated from the predicted behavior and have not selected
the choices that would have resulted in node number 17. Now we wish to test the
hypothesis that subjects will equally likely choose any of the other terminal nodes (i.e.
approximately 1/8 of the time). Therefore

H0 : p1  p2 . . . . p8  1
8

versus

Ha : at least one pi is different from 1
8

where pi is the probability that a subjects will end in nodes 7, 10, 11,13,14,15 and
16.

There were n48 of cases that subjects ended in one of the eight nodes and the
observed cell frequencies were the following:
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finished later

Contingency Tables
A problem frequently encountered in the analysis of count data concerns the

indepenence of two methods of classifying observed events. For example, we wish to
clasisify results of the experiment on Innovation and Venture Capital - first according
to the terminal node that it was reached and, second, according to the presentational
form the subjects were given in the experimental session (i.e. in our case we are
comparing the results from the extensive form game and strategic form game). If the
proportions of edning the game in different notes are constant from one presentation
to the other, then classification by terminal nodes (choice seletion) is independent of
the classification by the presentation given to the subjects. On the other hand, if the
proportions of ending in different terminal nodes (i.e. different selection of choices)
vary from one presentation to the other, then classification by terminal nodes is
contingent upon the presentation classification, and the classifications are dependent.
In investigating whether one method of classification is contingent upon another, we
display the data by using a cross-classification in an array called a contingency
table.

Figure 2.1: Extensive form game representation

The second game is represented by its strategic form and depicted in Figure 2.2.
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Figure 2.2: The strategic form representation of the game
The game depicted in Figure 2.1 is the same game as the one depicted in Figure

2.2. In the strategic form represenation the entrepreneur is the column player, venture
capitalist is the row player and they both maximize their expected income. Then there
are 2 strategies for the entrepreneur (expend effort  left, and ignore idea  right) and
2 strategies for the venture capitalist (do not fund  up and fund  down). The payoffs
are then filled in appropriately (where the payoff from down/left for example is
computed from ½ (-10, -15)  ½(100, 20).

Two groups of subjects drawn from the same population pool were selected to
participate in an experiment. The first group of subjects played the extensive form
game depicted in Figure 3.1. In the 25 completed sessions:

In the 25 completed sessions:
· 14 terminated at node 3,
· 6 at node 4
· 2 at node 6
· 3 at node 7
The second group played the strategic form game depicted in Figure 3.2. In the 25

completed sessions:
· 2 at up/left
· 0 at up/right
· 22 at down/left
· 1 at down/right
A total of n 50 decisions were recorded and the three possible ways the game

can end: Terminal node 3 or up/right or down/right, terminal node 4 or up/left, terminal
node 6 and terminal node 7 or down/left. At the same time, each decision was
identified according to the game form subjects played. These counts are presented as
a contingency table in Table 2.1 (NOTE: Numbers in parantheses are the expected
cell frequencies.)
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Terminal node 3
Up/Right or down/right

Terminal node 4
up/left

Terminal node 6 and 7
down/left

Total

Extensive form 14 (7.5) 6 (4) 235 (13.5) 25
Strategic form 1 (7.5) 2 (4) 22 (13.5) 25
Total 15 8 27 50

Table 2.1: Contingency table
Let p3 be the unconditional probability that the decision of subjects will ebd in

terminal node 3. Similarly define p4 and p6,7 as probabilities observing the two other
types of outcomes. Then these probabilities, which we will call the column probabilitie
of Table 2.1 will satisfy the requirement

p3  p4  p6,7  1
In the like manner, let pi (i  E and S) row probability that the outcome come from

the extensive form and the strategic form respectively where
pE  pS  1

Then if the two classifications are inependent of each other, a cell probability will
equal the product of its respective row and column probabilities in accordance with the
multiplicative law of probabilities.

For example, the probability that a terminal node 3 will be selected when subjects
were given to play the game in the extensive form is  p3pE. Thus we observe that
the numerical values of the cell probabilities are unspecified in the problem under
consideration. The null hypothesis specifies only that each cell probability will equal
the product of its respectice row and column probabilities and therefore imply
independence of the two representatins of the game (i.e. classifications). The
alternative hypothesis is that this equality does not hold for at least one cell. In order to
test the hypothesis we must estimate the row and column probabilities so that we can
estimate the expected cell frequencies. The procedures for obtaining the estimates is
called the method of maximum likelihood and the method of minimum chi-square.

The maximum likelihood estimator of a column probability will equal the column
total divided by n50. If we denote the total of column j as cj, then

p3 
c3
n  15

50 p4 
c4
n  8

50 p6,7 
c6,7
n  27

50
Similarly, the row probabilities pE and pS can be estimated using the row totals rE and
rS:

pE  rE
n  25

50 pS 
rS
n  25

50
Denote the observed frequency of the cell in row i and column j of the contingency
table nij. Then the estimated expected value of n11will be

Copyright 2008 by the Trustees of the Leland Stanford Junior University



MILLER AND PRASNIKAR: STRATEGIC PLAY,draft 11

^
E n11  n

^
pE

^
p3   n rE

n
c3
n  rEc3

n

where 
^
pE

^
p3  is the estimated cell probability. Similarly, we can find the estimated

expected value for any other cell. Thus, we see that the estimated expcted value of
the observed cell frequency nij for a contingency table is equal to the product of its
respective row and column totals divided bt the total frequency; that is,

Estimated Expected Cell Frequency
^
E nij 

ricj
n

where
ri  total for row i

cj total for column j
The estimated expected cell frequencies for our example are shown in

parentheses in Table 2.1. We can now use the expected and observed cell
frequencies shown in Table 2.1 to calculate the value of the test statistic

2 ∑
j1

3

∑
i1

2
nij−

^
E nij2

^
E nij

 14 − 7.52

7.5  6 − 42

4 . . . 22 − 13.52

13.5
 23.97

The next step is to determine the apropriate number of degrees of freedom
associated test statistic. The degrees of freedom associated with a contingency table
having r rows and c columns will always equal (r-1)(c-1). Thus, for our example, we
will compare 2 with the critical value of 2 with (r-1)(c-1)(2-1)(3-1)2 d.f.

The number of degrees of freedom associated with the 2 statistic equals the
number of cells (krc) less one degree of freedom for each independent linear
restriction placed on the observed cell frequencies. The total number of cells for the
data of Table 2.1 is k6. From this we subtract 1 d.f. because the sum of the observed
cell frequencies must equal n; that is,

n11  n12 . .n23  50
In addition, we used the cell frequencies to estimate two of the three column

probabilities. Note that the estimate of the third column probability will be determined
once we have estimated p3 and p4 because

p3  p4  p6,7  1
We lose (c-1)2 d.f. for estimating the column probabilities. We used cell

frequencies to estimate (r-1)1 row probabilities and, therefore we lose (r-1)1
additional degrees of freedom. The total number of degrees of freedom remaining will
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be
d. f. 6 − 1 − 2 − 1  2

In general, we see that the total number of degrees f freedom associated with an rxc
contingency table is

d. f  rc − 1 − c − 1 − r − 1
 rc − c − r  1  r − 1c − 1

If we use   0.05. We will reject the null hypothesis that the two respresentations are
independent (i.e. subjects in the extensive form behave the same way as subjects
given the strategic form) if 2  7.88. Since the value of test statistic, 2  23.97,
exceeds the critical value of 2, we reject the null hypothesis. The data present
sufficient evidence to indicate that the proportion of various ways the game can end
varies between the two representations.

Most statistical packages include a program for analyzing data contained in an rxc
contingency table.
Other applications
Time-Dependent Multinomials

Multidimentional Contingency Tables

Assumptions
The folowing assumptions must be satisfied if 2 is to have approximatelt a

chi-square distribution and consequently, the test described in this chapeter are to be
valid.

Assumptions
1. The cell counts n1,n2, . . .nk satisfy the conditions of a multinomial experiment ( or

a set of multinomial experiments created by restrictions on row and column totals).
2. The expected values of a cell counts should equal or exceed 5.
Assumption 1 must be satisfied. The chi-square goodness-of-fit tests, of which

these tests are special cases, compare frequencies with expected frequencies and
apply only to data generated by a multinomial experiment.

The larger the sample size n, the closer the chi-square distribution will approximate
the distribution of 2.
Nonparametric Statistics
The Mann-Whitney U Test: Independent Random Samples

The t test for comparing tho population means is a test to detect differences in the
location of two normal polulation frequency distributions. The Mann-Whitney U test is
a nonparametric alternative to this test. It is used when we have dounbts that the
assumptions of normality and/or equal variances required for the Student’s t test are
satisfied. The Mann-Whitney U test (and all of the tests that follow in this section) is

Copyright 2008 by the Trustees of the Leland Stanford Junior University



MILLER AND PRASNIKAR: STRATEGIC PLAY,draft 13

based on an analysis of the ranks of the sample observations.
Assume that you have independent random samples of sizes n1 and n2 from two

populations, 1 and 2. The first step in finding the Mann-Whitney U statistic is to ran all
(n1  n2 observations in order of magintude, assigning 1 to the smallest observation ,
a 2 to the second smallest, and so on. Ties in the observations can be handled by
averaging the ranks that would have been assigned to the tied observations and
assigning this avergage to each. Then calculate the sums of the ranks, T1 and T2 for
the two samples.

Write the example

The formula for the Mann-Whitney U statistic can be given in terms od T1 and T2;
one value of U will be larger than the toher, but the sum of two U values qill always be
equal n1n2.The formulas for the two values of U: U1 and U2 are given below:

Formulas for the Mann-Whitney U Statistic

U1  n1n2 
n1n1  1

2 − T1

U2  n1n2 
n2n2  1

2 − T2

where
n1  number of observations in sample 1
n2  number of observations in sample 2

T1 and T2 are the rank sums of samples 1 and 2, respectively. (Note: It can be
shown that U1 and U2n1n2 and T1 and T2 

nn1
2 , where n  n1  n2. )

U1 will be small when T1is large. This will likely occure when population1
distribution of measurements is shifted to the right of the population 2 distribution of
measurements. To conduct a one-tailed test to detect a shift in distribution 1 to the
right of distribution 2, you will reject the null hypothesis of "no difference in the
population distributions" if U1 is less than some specified value U0; that is, you will
reject H0 for small values of U1.Similarly, to conduct a one-tailed test to detect a shift
of distribution 2 to the right of distribution 1, you would reject H0 if U2 is less than
some specified value, say U0.

Table X in Appendix X gives the probability that an observed value of U will be less
than some specified value U0.This is the value of  for a one-tailed test. To conduct a
two-tailed test- that is, to detect a shift in the population distributions for the
measurements in either direction - we use U, the smaller of U1 or U2 as the test
statistic and reject H0 for U  U0.The value of  for the two-tailed test will be double
the tabulated value given in table X in Appendix X.
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To see how to locate the rejection region for the Mann-Whitney U test, suppose
that n1  4 and n2  5 (see table X). Across the top of Table X, you see the value of
n1. Values of U0 are shown down the left side of the table. The entries give the
probability that U will assume a small value (i.e. probability that U ≤ U0). Since, for this
example, n1  4, we move across the top of the table to n1  4. Move to hte seocnd
row of the table corresponding to U0  2 for n1  4. The probability that U will be less
or equal to 2 is found as 0.0317. Similarly moving across the row for U0  3, you see
that the probability that U is less or equal to 3 is 0.0556. If you conduct a one-tailed
Mann-Whitney U test with n1  4 and n1  5 and would like  to be near 0.05, you
would reject the null hypothesis of equality of population relative frequency
distributions when U ≤ 3.The probability of a type I error for the test would be
  0.0556. If you use this same rejection region for a two-tailed test, that is, U ≤ 3, 
would be double the tabulated value, or   20.0556  0.1112.

When applying the test to a set of data, you may find that some of the obervations
are of equal value. Recall that ties in the observation can be handled by averaging the
ranks that would have been assigned to the tied observations and assigning this
average to each. For example, if three observations were tied and were due to receive
ranks 3, 4, and 5, we would assign the rank of 4 to all three. The next observation in
the seuence would receive the rank of 6, and ranks 3 and 5 would not appear.
Similarly if two observations were tied for ranks 3 and 4, each would receive a rank of
3.5, and ranks 3 and 4 would not appear.

The Mann-Whitney U Test
1. Null hypothesis: H0: The population relatvie frequency distribution 1 and 2 are

identical.
2. Alternative Hypothesis: Ha : The two population relative frequecny distributions

are shifted with respect to their relative locations (a two-tailed test). Or Ha : The
population relative frequency distribution 1 is shifted to the right of the relative
frequency distribution for population 2 ( a one-tailed test).

3. Test Statistic: For a two-tailed test, use U, the smaller of

U1  n1n2 
n1n1  1

2 − T1

and

U2  n1n2 
n2n2  1

2 − T2

where T1 and T2 are the rank sums for samples 1 and 2.
Example 2.3
In a bargaining game subjects have to decide how much they will offer to the

opponent in the range from 0 to 10. One experiment conducted involved only male
subjects pool and the other experiment involved the female subject pool. 10
observations were reported for each experiment:
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Male subject pool Female Subject pool
1.21 (2) 1.49 (15)
1.43 (12) 1.37 (7.5)
1.35 (6) 1.67 (20)
1.51 (17) 1.50 (16)
1.39 (9) 1.31 (5)
1.17 (1) 1.29 (3.5)
1.48 (14) 1.52 (18)
1.42 (11) 1.37 (7.5)
1.29 (3.5) 1.44 (13)
1.40 (3.5) 1.53 (19)
Rank sum T1  85.8 T2  124.5

Suppose we choose a value for  near 0.05. Then we can find U0 by consulting the
portion of Table X, Appendix..., corresponding to n2  10. The probability, PU ≤ U0,
nearest 0.05 is 0.0526 and corresponds to U0  28. We will reject if U2 ≤ 28.

Calculating U2, we have

U2  n1n2 
n2n2  1

2 − T2

 1010  1011
2 − 124.4

 30.5
As you can see, U2 is not less than U0  28. Therefore, we cannot reject the null

hypothesis. At the   0.05 level of significance, there is not sufficient evidence to
indicat that offers made by females are larger than the offers made by male subject
pool.

A simplified large-sample test (n1 ≥ 10 and n2 ≥ 10 ) can be obtained by using z
statistic (see subsection z). When the population distributions are identical, it can be
shown that the U statistic has expected value and variance:

EU  n1n2
2 and U

2  n1n2n1  n2  1
12

The distribution of

z  U − EU
U

tends to normality with mean 0 and variance equal to 1 as n1 and n2 become large,
This approximation would be adequate when n1 and n2 are both greater than or equal
to 10. Thus, for a two-tailed test with   0.05, we would reject the null hypothesis if
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|z| ≥ 1.96.
Observe that by using the z statistic, you will reach the same conclusions as when

using U test for the example 2.3. Thus,

z  30.5 − 1010/2
101010  10  1/12

 30.5 − 50
2100/12

 −1.47

For a one-tailed test with   0.05 located in the lower tail of the z distribution, we
reject the null hypothesis if z  −1.645. Since z  −1.47 does not fall in the rejection
region, we reach the same conclusion as the exact U test for the example 2.3.

The Mann-Whitney U Test for Large Samples: n1 ≥ 10 and n2 ≥ 10

write it down

The Wilxon Signed-Rank Test for a Paired Experiment
Calculation of the Test Statistic for the Wilcoxon Signed-rank Test
1. Caclulate the difference (xA − xB) for each of the n pairs. Differences equal to 0

are eliminated and the number of pairs, n, is reduced accordingly.
2. Rank the absolute values of the differences, assigning 1 to the smallest, 2 to the

second smallest, and so on. Tied observations are assigned the average of the ranks
that would have been assigned with no ties.

3. Calculate the rank sum for negative differences and label this value T−. Similarly
calculate T, the rank sum for the positive differences.

For a two-tailed test, we use the smaller of these two quantities as a test statistic to
test the null hypothesis that the two population relative frequency histograms are
identical. The smaller the value of T, the greater will be the weight of evidence favoring
rejection of the null hypothesis. Therefore we will reject the null hypothesis if T is less
than or equal to some value, T0.

For one-sided test to test that distribution 1 is shifted to the right of distribution 2,
we should use the rank sum T− of the negative differences and reject the null
hypothesis for small values of T− , T− ≤ T0. If we wish to detect a shift of distribution 2
to the right of distribution 1, we use the rank sum T of the positive differences as a
test statistic and reject for small value of T,T ≤ T0.

The probabilities that T is less than equal to some value T0 has been calculated for
a combination of sample sizes and values of T0.These probabilities, given in
Appenidix X can be used to find the rejection region for the T test.

Example 2.4 Test an hypothesis of no difference in population distributions of
deviation of bids for the paired difference in the auction experiment that included the
comperision of bids in Second price sealed bid acution and English auction. Six
different subjects participated in each auction experiment. The valuations were
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randomly drawn from uniform distribution with support [50, 200] but the valuations that
were drawn in one experiment were randomly assigned in the second experiment.

Valuation 1 Valuation 2 Valuation 3 Valuation 4
Bid in second price sealed bid auction (x1) 135 102 98 141
Bid in English auction (x2) 129 120 112 152
Difference ( x1- x2) 6 -18 -14 -11
Rank 2 5 4 3

Table
The null hypothesis to be tested is that the two population frequency distributions

of bids are identical. The alternative hypothesis, which implies a two-tailed test, is that
the distributions are different.

Because the amount of data is small, we will conduct the test using   0.10. From
table X, the critical value of T for a two-tailed test,   0.10,T0  2. Hence, we reject
H0 if T ≤ 2.

The difference x1- x2 are calculated and ranked according to their absolute value in
the table. The sum of positive ranks is T  2, and rank sum of the negative ranks is
T−  19.The test statistic is the smaller of these two rank sums, or T  2. Since T  2
falls in the rejection region, we reject H0 and conclude that the two population
frequency distributions of deviations from the predicted bids differ.

Although Table X in Appendix is applicable for values of n (number of data pairs)
as large as n  50, it is worth noting that T, like the Mann-Whitney U, will be
approximately normally distributed when the null hypothesis is true and n is large (25
or more). This allows us to construct a large-sample z test, where

ET  nn  1
4

T
2  nn  12n  1

24
Then the z statistic

z  T − ET
T


T − nn1

4
nn12n1

24

can be used as a test statistic. Thus, for a two-tailed test and   0.05, we could
reject the hypothesis of "identical population distributions" when |z| ≥ 1.96.

A Large-Sample Wilcoxon Signed-Rank Test for a Paired Experiment: n≥ 25
1. Null Hypothesis: H0: The population relative frequency distributions 1 and 2 are

identical.
2. Alternative Hypothesis: Ha: The two population relative frequency distributions

differ in location (a two-tailed test). Or Ha: the population 1 relative frequency
distribution is shifted to the right (left) of the relative frequency distribution for
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population 2 ( a one-tailed tets).
3. Test Statistic: z  T−nn1/4

nn12n1/24

4. Rejection region: Reject H0 if z  z/2 or z  −z/2 for a two-tailed test. For a
one-tailed test, place all of  in one tail of the z distribution. To detect a shift in
distribution 1 to the right of distribution 2, reject H0 when z  z. To detect a shift in the
opposite direction, reject H0 if z  −z.
The Kruskal-Wallis H Test for Completely Randomized Designs

This test is used to detect differences in location among more than two population
distributions based on independent random sampling.

The procedure for conducting the Kruskal-Wallis H test is similar to that used for
Mann-Whitney U test. Suppose we are compering k populations based on
independent random samples n1 from population 1, n2 from population 2,...and nk from
polulation k where

n1  n2 . . .nk  n
The first step is to rank all n observations from the smallest (rank 1) to the largest

(rank n). Tied observations are assigned a rank equal to the average of the ranks they
would have received if they had been nearly equal but not tied. We then calculate the
rank sums T1,T2

Wilcoxon-Mann-Whitney type tests for first order stochastic
dominance

For data which is not normally ditributed or follow some other a priorly known
theoretical distribution function, one must use non-parametric tests. One such test is
the Wilcoxon-Mann-Whitney test.

Data from two samples are combined and the data are tagged so that the batch to
which they belong is recorded. The combined data set is then sorted according to the
value of the data. Define R1as the sum of ranks held by the number of batch 1 and R

Numerical Data
sample mean different from theoretical prediction (F test for normal and chi sqared

for asymptotic)
vector of sample means different from theoreitcal predictions
difference between two means
estimating coefficients in a regression analysis
testing the null effects of playing according to the theory
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