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Introduction

Life is fraught with uncertainty. The benefits of human capital, such as schooling,
on the job experience, and children, are unpredictable. Personal health is another
cause of great uncertainty. Insurance can only be purchased against some traumatic
personal events such as the serious disability from injury, or the death of household
breadwinners, but not for all, such as marital breakdown, which is often accompanied
by economic hardship and child neglect. Homeowners bear the risk of changes in their
neighborhood property values and that often contribute significantly to changes in their
total lifetime wealth. Entrepreneurs and small businessmen typically assume a lot of
business risk. The timing of death itself is random. This chapter analyzes rational
choice under uncertainty.

Our point of departure is the very simple hypothesis, that in games for a single
player, individuals maximize the expected value of their wealth. Several examples in
the next section illustrate how this assumption can be used as a benchmark for
calculating how information should be used and its value to the decision maker.

Section 3 demonstrates how to test the expected wealth maximization hypothesis
using experimental methods. There we define the certainty equivalent as the minimal
(maximal) amount a person would accept (pay) to avoid a lottery. The certainty
equivalent of a wealth maximizer is the expected value of the lottery, or its actuarial
value; the certainty equivalent of a risk seeker is more than the expected value, while
a risk avoider’s certainty equivalent is less. Although expected wealth maximization is
a useful assumption to make in some situations, it seems inappropriate for others.
Although more wealth is preferred to less, for many people, the certainty equivalent of
a lottery with monetary payoffs is not equal to its actuarial value.

Expected utility maximization generalizes expected wealth maximization to account
for different attitudes towards risk. The extra generality comes with an additional
burden, for the decision maker’s attitude towards risk partly determines the value she
places information. If she is an expected utility maximizer, then each possible outcome
that might occur is assigned a utility, and the expected utility is found by summing (or
integrating) the weighted utilities from the payoffs, where the weights are just the
respective probabilities of occurrences. To predict the value of information to an
expected utility maximizer, we need to know her utility function. Fortunately, testing
the expected wealth maximization hypothesis accomplishes the dual purpose of
revealing the utility function of an expected utility maximizer. The experiments not only
reveal a subject’s attitudes towards risk, but also provide a way of recovering her utility
function.

Sections 4 and 5 continue our analysis of uncertainty under expected utility
maximization. The expected utility hypothesis is widely used to assess attitudes
towards risk. We define several parametric forms that are commonly used to model
whether players are risk averse, risk loving or risk neutral (expected value
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maximizers), and describe experiments that help to identify which of these forms can
be ascribed to experimental subjects. The approach of assuming that players are risk
averse utility maximizers is at the heart of almost all study of insurance policies and
financial portfolio management. The examples on insurance, investment in risky
securites and portfolio choice in financial markets in Section 5 illustrate why risk
attitudes guide decisionmaking on these issues. We show that a risk averse expected
utilty maximizer fully insures her property at acturially fair rates, but invests some of
her assets in risky securites if their expected rate of return exceeds the interest rate.

The two remaining topics we discuss in this chapter are devoted to testing and
then relaxing the hypothesis that players are expected value maximizers. Whether a
person is an expected utility maximizer or not depends on whether they know the laws
of probability, and obey the three axioms of rational behavior, completeness,
transitivity and indpendence. In section 6 we define these axioms, and provide several
tests for investigating whether experimental subjects obey them, along with the laws of
probability.

Predicting individual behavior under uncertainty is feasible but more arduous if
people are not expected utility maximizers. One approach is to entertain a more
general set of preferences than expected utility theory permits, and extract more detalil
in experimental testing sessions about subjects’ preferences over risks than what
expected utility theory demands. In this way we could operationalize a theory that
relaxes the independence axiom but still provides us with predictions about how
indiviudals acquire, use and value new sources of information. An alternative
approach is to limit our analysis and the range of our predictions to situations where
subjects might rank lotteries the same way even though their attitudes towards
uncertainty are heterogeneous. In Section 7 we take up the last topic in this chpater by
defining several notions of dominance between probability distributions, and testing
whether subjects form the same rankings.

Expected Wealth Maximization

A first approach to choice under uncertainty is to attach a monetary value to each
possible outcome, and implement decisions that maximize the expected wealth from
the outcomes, where the expected wealth from a decision plan is defined as the
weighted sum of the monetary values of the outcomes, and the weight placed upon
each outcome is the probability of its occurence under that decision plan. Under the
hypothesis of wealth maximization, the optimal acquisition and use of information can
be calculated in a straightforward way. We consider three examples to illustrate the
applicability of this approach.

Foreign Investment

Figure 3.1 depicts the extensive form of a game in which a multinational is
deliberating over the prospect of acquiring a plant in new, previously unexplored
territory. Having already undertaken some study, it must choose between making a
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final decision now, or deferring until more information is gathered and processed.

[ [tensive Fom Game - mukinationnal_crignalefy

100X

PN S
[t o R e |

() () () (e () (o) () ()

[CI’

) e ) () D) ) Ot () QD GmD) () D @
il | H

Figure 3.1
Direct foreign investment

Although the factory’s condition is determined before the firm takes its first
decision, since it is not revealed until after a decision has been taken the solution to

the extensive form in Figure 4.20 is identical to the solution to the extensive from in
3.2.

o |

Figure 3.2
Direct foreign investment redrawn

Since the moves of uncertainty are adjacent it is useful to consolidate them. This is
undertaken in Figure 4.22.
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The expected value of not inspecting and buying is found by solving the subproblem
depicted in 4.22.
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Figure 5.2
Calculating the of not inspecting
The value from not inspecting is the maximum of the value from rejecting the car
(nothing) versus buying it immediately (12 — 4 = 8).
Inspecting the car
Focusing on the opportunity of making the purchase decision after undertaking an
inspection for 2 monetary units, we form the sub-game (?):
Figure 5.3
Calculating the value of an inspection

Simplifying the role of uncertainty
Figure 5.4
Simplifying the role of uncertainty

The expected value of inspecting the car first:
There are four strategies to consider:

1. Buy the car regardless of the outcome of the inspection, yielding an

expected value of 6.
2. Do not buy the car regardless of the outcome, yielding an expected value
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of —2.
3.  Buy the car if it passes the inspection test, but not if it fails, yielding an
expected value of 10.
4.  Buy the car if it fails the inspection test, but not if it passes, yielding an
expected value of —6.67.
The solution to the used car problem
Notice that the first two strategies do not exploit the conditioning information that
the test provides, and thus simply add the cost of the test, 2, to the calculation of the
buy/sell strategies. This illustrates the fairly obvious rule that information should not be
purchased unless future decisions will condition on its content. Notice that 10, the
expected value of the third strategy of the third strategy exceeds all the others. For
example unconditionally buying the car yields 8.

Product Testing

In this final example we consider a pharmaceutical company which cannot market
a drug unless it has passed guidelines set out by the Federal Drug Administration. we
suppose there are two tests that must be passed before marketing is permitted.

Figure 4.
Product Testing

Filling a Vacancy

Acquiring information by search rather than by purchasing it. There are time costs
involved. Consider a department within an organization that makes offers to a
succession of job candidates. We suppose the value of filling the position to the
department is a positive number denoted x, and that the department can offer the job
to at most to N candidates, but that if an offer is rejected there is some probability
that the department will lose the position. No bargaining takes place between the
department and any candidate: the department simply makes one offer to the current
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candidate which is either accepted or rejected. We denote the department’s n" offer
by wy. If the n™" candidate accepts the department’s offer then the net benefit to the
dpeartment is x — w,. Each job candidate n € {1,...,N} has a reservation wage which
we denote by v,, meaning that he will accept any wage offer of at least v, and reject
every wage offer below it. The department does not observe v, but believes the
probability distribution of v, is independently, identically and unifromly distribributed
over all candidates n € {1,...,N} with support [v,v]. Thus the probability that v, < w s
(w—-Vv)/(v—-Vv). We assume that x > v; otherwise the department would have no
interest in going through the hiring process.

First consider the case N = 1. There is no reason to offer more than v since every
candidate would accept v expected value to the department from making an offer of w;
is the probability of acceptance multiplied by the net value conditional on acceptance.
Accordingly the department chooses w; to maximize:

(X=w1)(W1 —V)/(V—V)
subject to the constraint that w; < v. From the first order condition to this problem, we
derive the interior solution:
wg = (X+V)/2
Noting that the division is assured of hiring the candidate if it offers the candidate 1,
the optimal offers is therefore
w¢ = min{(X +Vv)/2,v}

Now consider a two period extension of the optimization problem. In the last period

the value of the game is Vi, so in the preceding period, the firm sets r to maximize

Vs =max {(x—=wz)F(wz) +[1-F(w2)]BV1}

More generally
Vi =max {(Xx —wWn)F(Wn) +[1 - F(Wn)]pVn1}

Differentiating with respect to w, we obtain
(X = WR = fVn1)F'(WR) = F(w)
Comparing the first order condition for w$ with w$ we see that the extra term on the left

side, BV,-1, enters negatively.
Returning to the uniform distribution case, so the first order condition simplifies to

X—Wp— BVn1 = Wj
which implies
BVn1 = X—2wp
But
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Vi = (x=wp)F(wp) +[1-F(Wq)]BVn1
= (Xx=wp)wyp + [1 —wR]BVia
= (Xx=wi)wp + [1 —wir](x — 2wp)
Substituting into the equation for Vi1 we thus obtain
2rr — 1= (1 —rore+r(2re—1)
2ryy = rg+1

which is a first order difference equation with solution

Experiment. We consider several sequential offer games. Consider a game of
sequential offers in which there is a probability that the game might end after any
given period if a suitable candidate does not accept. Compare your results with a
game in which continues for exactly N periods

Certainty Equivalence

Maximizing expected wealth is a useful assumption to start with, especially when
thinking about the objectives of a publicly traded corporation. Shareholders typically
hold a small stake in each company, and thus use the law of large numbers to reduce
their exposure to risk. In addition they can hold safer assets,such as bonds, if they
choose. Consequently those shareholders with higher risk tolerance hold riskier
portfolios, so the premium demanded for holding them is modest. But there is planty of
causal evidence against wealth maximization. The returns from (non-tradable) human
capital are high relative to (tradable) physical capital. Homeowners (and drivers)
partially insure their houses (and cars) at actuarially unfair rates. Individuals insure
their health treatment costs at actuarially unfair rates. Entrepreneurs seek financial
partners notwithstanding costs of the moral hazard and hidden information. Is wealth
maximization reasonable assumption in these situations too? This section devises a
test of the welath maximization hypothesis, and explains why .

Lotteries

A first approach to testing expected value maximization is to determine how much
people value choices with uncertain outcomes. Specifically, how much are they willing
to pay to avoid a risk, or equivalently, how much are they willing to pay to gamble? To
investigate this question, we consider a lottery where an experimental subject
randomly draws one prize from a finite number of potential prizes, knowing the
probability of drawing any given prize in advance. Suppose there are L possible
prizes, whose values are denoted by x; through x., and L probabilities, denoted by p;
through p. where 0 <p; <1foralll € {1,2,...,L} and

L
i P 1

Summarizing, if a person plays the lottery, outcome | € {1,2,...,L} occurs with
probability p;, and in that event she receives a prize of x;. For expository convenience
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we rank the value of the prizes in ascending order. Thus x; = min{xy,...,X.} and
XL = max{X, ..., XL}

How much a subject is willing to pay for a lottery ticket reveals much about her
attitude towards risk. We define the maximal amount she is willing to pay for a ticket
as her reservation value, or certainty equivalent, and denote it by v,. Since the value
of her prize from participating in the lottery invariably lies between x; and x., we
assume x; < v, < x.. That is, we impose the principle of weak dominance upon
preference orderings, a topic discussed more fully in the last section of this chapter,
and also Chapter 8.

Inducing an experimental subject to truthfully announce her certainty equivalent is
a subtle matter. For example if a player is awarded a lottery ticket at the price she
bids, she has a strong incentive to bid less than her certainty equivalent. To induce
experimental subjects to report their reservation values truthfully, we adapt the second
price auction mechanism, analyzed in Chapter 15, to lottery ticket purchases for one
player. To begin the experimental session, the N participating subjects are shown the
same lottery, defined by the L prizes with values (xi,...,x.) and their associated
probabilities (p1,...,p.). Then each subjectn € {1,2,...,N} is asked to place a bid we
denote by b,. After the bids have been recorded, the moderator draws a random
number denoted c,, which is continuously distributed on the closed interval joining
min{xs, ..., XL} to max{xs, ..., X, }. Whether the subjects know probability distribution
F(cn) or not, and whether c, is independently distributed across n, is immaterial,
however ¢, must be drawn independently of the bid b,. If b, > c,, the subject receives
a ticket to the lottery and randomly draws her prize x, according to the probability
distirbtuion (p1,...,pL). If by, <cy the subject is denied a lottery ticket, and she receives
no payoff.

In this experiment you are asked to how much you are willing to pay for a lottery
called L when you know its probabilities. Call that number b for bid. We then draw a
random number n from a probability distribution which lies between (that has support
on) 0 and 100. If n £ b, then you pay n in exchange for the lottery L, and receive the
payoff from playing the lottery. If b < n, then you neither pay nor receive anything. The
first lottery pays $100 half the time and $0 half the time. The second lottery pays $100
one eleventh of the time, $90 one eleventh of the time, . . ., and $0 eleventh tenth of
the time. The third lottery pays $100 one tenth of the time, $90 one tenth of the time, .
. ., and $10 one tenth of the time, so always pays out something

Optimal bidding

Suppose the certainty equivalent of the n subject for lottery L is the value v,
What is her optimal bid? If n bids less than her certainty equivalent, that is b, < vy,
then she gains v, — ¢, whenever b, > c,, and zero otherwise. Now compare the
outocmes of this bidding strategy with the alternative of bidding v,. There are three
possibilites to consider. If b, > ¢, or vy, <cp, then the bidding strategies yield the same
outcome, v, — ¢, and 0 respectively. However if b, < ¢, < bn + A, then bidding b, yields
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0, but bidding v, nets a gain of v, — ¢,. Consequently bidding v, yields a payoff as
least as high as bidding less than v, for all random draws of c,, and a strictly higher
payoff for some draws of c,. In other words bidding v, weakly dominates submitting a
lower bid.

We have just proved that subjects should not bid less than their certainty
equivalent in this lottery. Now suppose subject n bids more than her certainty
equivalent. If b, > vy, then the n™ subject gains v, — ¢, if ¢, < v, but loses ¢, — v, if
Vnh < Cn < bn. The only other possiblity is that b, < ¢, in which case she pays nothing
but does not receive a lottery ticket either. By way of comparison, bidding v, avoids
the loss that occurs when v, < ¢, < b,y. Again we see that v, weakly dominates
submitting a higher bid. Therefore v, is the optimal bid, so in this lottery each subject
fully reveals her certainty equivalent through their bid.

To test whether experimental subjects are expected wealth maximizers or not, we
graph their bids on a sequence of lotteries L™ through LY, graphing their bids
against the expected values of the lottery. We seek answers to two questions. do
subjects have the same attitudes towards risk?

Are bidders expected wealth maximizers?

Here we report an experiment to see whether we can reject the hypotheis that
there is a 45 degree straight line from origin joining all the certainty equivalents. We
run a regression with intercept and slope coefficients and conduct an F test.

The Expected Utility Hypothesis

Under the expected utility hypoethesis a utility is attached to all the lottery prizes
(p1,-.-Px), and Let (us,...ux) denote the vector of utilities that. Then L; > L; if and only

iI
k=1 ! k=1 J

The key implication of this remarkable theorem is that if the independence axiom is
satisfied then we can represent preferences over uncertainty by re-scaling payoffs
through a utility function and then taking the expectation, in other words using
expected utility instead of expected value as the objective function.

Consider a single argument such as a numeraire payoff, as we have done in
representing the payoff in the extensive form representation, and suppose that
independence axiom applies. The we can continue as before just by re-scaling

At the same time, we are bound to acknowledge that to the extent that the
independence axiom is invalid the prediction based on expected utility theory are
discredited.

Constructing a utility function

Expected utility and certainty equivalence. Let u(x) denote the utility from a
realization of the random variable x. Assume your preferences obey the expected
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utility hypothesis. Then your expected utility from playing a lottery F is EF[u(x)], where
E denotes the expectations operator. It follows that your certainty equivalent for F is
the value vF which solves u(vF) = EF[u(x)]

Constructing a utility function that obeys the expected utility hypothesis. We can
use a sequence of experiments to construct a utility function. Experiment with different
probabilities. Graph out the results. Construct a utility function based on experiments
by first determining a fit for some lotteries. We assign a value of x to the lower value
and x to the upper value. Then we define a sequence of lotteries L(x,X,p) by a two
outcome lottery, x and X, attaching probability p to the lower outcome, and graph the
results.

Attitudes towards risk

Expected utility and attitudes towards risk . In this case we can characterize you
attitude towards risk quite simply. If you are risk neutral, then vF = EF[x] for all F, and
hence we can write u(x) = x. If you are a risk lover, meaning vF > EF[x] for all F, then
u(x) is convex. If you are a risk avoider, meaning vF < EF[X] for all F, then u(x) is
concave.

An expected utility maximizer is said to exhibit risk aversion if her certainty
equivalent for a lottery is less than its expected value. In the case of an expected utility
maximizer if w is a random variable denoting her wealth, and u(w) is her utility
function, a risk averse person prefers the expected value of a random wealth over the
random variable itself:

u(E[w]) > u(c) = E[u(w)]
The inequality holds if and only if u(w) is a concave function, that is u(w) satisfies the
inequality
Au(wy) + (1 - )u(wz) < u(Awg + (1 — A)ws)
for any wealth pair (w1,w>) and weight A € (0,1). We can see this point from Figure

3.1. The horizontal measures wealth, the outcome of a lottery which in this example
lies between w; and w,. We suppose the expected value of
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Figure 3.1: A Strictly Concave Utility Function
how risk averse are experimental subjects and how can experiments
determine/measure it?
An alternative to assuming investors exhibit quadratic risk aversion is that their
utility function takes the form

u(c) = c”

for some positive constant n. Note that if > 1, then u(c) is convex increasing and the
investor is risk loving, if n = 1 then the investor is risk neutral and maximizes expected
value, and if n < 1 the utility function is concave increasing implying risk aversion. One
can also show that as n converges to zero, u(c) converges to log(c). Because of its
flexibility and parsimony, the relative risk aversion utility function is widely used to
approximate attitudes towards risk.

A person is said to have constant relative risk aversion if her utility function takes
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the form
u(c) =c"

The key property of this utility function is that the ratio u”(c)/u’(c) is proportional to c. A
person has absolute risk aversion if her utility function takes the form

u(c) = —exp(-oc)
In this case u”(c)/u’(c) is a constant.
Measuring risk aversion

Parameterizing the utility function
consider the problem of choosing y to minimize

Z:lzl ZjJ:l(ij - u"j)z

where uy; is the certainty equivalent for a lottery with mean x;. We might minimize over
everyone or minimize over each person separately and then test whether they are the
same.

Expected Utility Maximization
Expected utility is applied in many finance and insurance applications
Insurance

Insurance is a pervasive feature of the consumer durable goods and housing
sectors, but there are other reasons why are cars and houses are insured. Mortgage
banks insist that secured credit is backed by insurance. In the event of a loss, the
creditor is thus assured that the loan will be repaid. This prevents risk lovers from
betting their house against fire or against damage to their car incurred from an
accident. The reason why the mortgage or creditor might insist on insurance is not
related to their attitude towards risk. After all they can diversify over large number of
customers. It has to do with the fact that as first claimant on the collateral, these
companies are protecting themselves against a h. Note that if everyone handled the
asset in the same way, the lender should not be concerned: it simply incorporates the
losses into the interest rate. The problem is that some people are safer and more
careful than others, and the loan company resists specializing in those kinds of risks,
parceling the job out to an insurance agency. In the end much insurance might be at
least as much a response to moral hazard issues that arise in collateralized loans as it
is to the demand by risk averse demanders seeking to insure themselves against
hardship brought on by accidents.

How much insurance a person buys is depends on his attitude towards risk and the
premium he pays. As we suggested in the previous slide, the outcomes of lotteries
you own might be negatively correlated with assets you can buy. Therefore insurance
decisions are part and parcel of personal asset management.Optimal insurance. A risk
averse person fully insures himself against a calamity if actuarially fair insurance is
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available. This follows from the fact that for risk averters the certainty equivalent of a
gamble is greater than its expected value. By the same argument we have used on
portfolio choices, a risk averter will not fully insure himself if the rates are not
actuarially fair. He will retain ownership over a portion of the lottery.

A common reason given for why consumers buy housing, car and life insurance is
that they or their designated beneficiaries are risk averse. The discussion above
guestions for house and car insurance but seems less contraversial for life insurance.
To illustrate this point suppose that a driver begins with wealth w and faces a gamble
in which she might lose d from damage in the event of a accident which occurs with
probability p. To offset this potential loss an insurance company offers her the
opportunity to reimburse her g € [0,d] for her loss, for a premium of gf . Suppose the
driver has an expected utility maximizer with a twice differentiable, increasing utility
function u(w) defined on her wealth w. How much insurance should she buy? A risk
neutral driver fully insures his vehicle if the rate better than actuarially fair but buys no
insurance if it is unfacorable to him. Finally a risk seeker does not buy any insurance
sold at actuarilly fair rates, but can be induced to buy it at rates that are favorable to
him. Suppose the driver is risk averse. If she only partially insures herself with q < d
units, her expected utility is:

pu(w—gf) + (1 —p)u(w—gf —d +q)

= uw—qf) + (1 -p)uw-af —d+q) —u(w-qf)]

< u(w —gf)
But we see from the top line that a utility of u(w — gf) can be obtained if insurance is
actuarially fair, which means f = p per unit, and the driver prurchases full insurance,
setting q = d. It follows that a risk averse driver would fully insure his vehicle if the
premium is actuarially fair. However if the premium was less favorable to the driver,
the discussion in the next example below demonstrates that even a risk averse driver
would not fully insure his vehicle, prefering to take on some risk. In this case the risky
asset, a partially uninsured vehicle, offers a higher expected return than the safe full
insurance alternative.

In the following experiment, suppose u(w) = —exp(aw) and f and p = 0. 1.

Pension fund

Consider a worker planning retirement who allocates w, the amount of wealth to be
invested for future consumption, between buying shares in a pension fund with a
random return denoted by z, and saving at a constant interest rate denoted by r.
Alternatively we might like to think of the proportion a pension fund allocates to bonds
and the amount allocated to stocks. Denoting the amount of his wealth deposited in
his savings account by s, the amount of wealth consumed in retirement is then

c=s(l+r)+(w-s)m
We assume the worker seeks to maximize his expected utility in retirement
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E[u(s+sr+wr —sr)]

by choosing s € [0,w], where u(c) is a real valued, twice differentiable, increasing
function in retirement consumption, and the expectation is taken over the random
variable .

A risk averse worker would not allocate any of his wealth into the fund if the
expected return on pension funds was less than the return on savings. Historically, the
average return from investing in pension funds has exceed the return on savings.
Accordingly we shall assume that 1 +r < E[x]. Under this assumption, a risk neutral or
risk seeking worker would not allocate any wealth to his savings account. A weaker
result holds for a risk averse worker: he allocates a strictly positive amount to the
pension fund. Placing all his wealth in a saving account yields a retirement utility of
u(s + sr) to the worker, and the change in utility from allocating a marginal amount from
his savings account to a pension fund would be positive since

Elu(s+sr+wr—snr)(L+r—m))s=1]=u'(s+sr){(L+r)—E[x]} >0

Therefore regardless of his risk preferences, it cannot be opitmal for a worker to
concentrate all his wealth in savings if the return on savings is less than the expected
return on the pension fund.

We can also establish the condition under which a risk averse worker puts
ignnores his savings account. Note first that if the workder is risk averse, then u(c) is
concave, second that the expectations operator over the random variable z preserves
concavity, and third, that the savings deposit is chosen on the convex set [0, w].
Therefore the worker maximizes a concave function on a convex set. The
Kuhn-Tucker theroem implies that is a unique local maximum defines the optimal
choice of s. We complete the proof by finding sufficient conditions for a local maxmium
at the point s = 0, where all wealth is concentreated in the pension fund. There is a
local maximum at this no savings choice if taking a dollar in from the pension fund and
placing it in a savings account lead to a decline in the worker’s utility. Thus the
necessary and sufficient condition for specialization in the pension fund is

1+ nE[u'(wr)(1+1)] < E[U'(wr)r]
where u'(c) denotes the first derivative of u(c) with respect to c.
Otherwise an interior solution obtains for a risk averse worker, characterized by the

first order condition for the optimal savings s°. It states that the expected marginal
utility from adding another dollar to either account is equal:

(1+r)E[u'(s® +s°r + wr —s°z)] = E[U’(S° + S°r + wrr — S°r) 7]

In an experiment we normalized wealth to unity, that is w = 1, let the utility function
take the function form u(c) = c” for some y > 0, set the interest rate r to zero and
assumed r is uniformly distributed between z and z + 1 for some real number z. Then
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n+1
E[u'(s® + s°r + wr — s°z)] = j y(s® + 7 —s°r)" tdr

_ |: (s°+m—s°r)” :|E+1

1-5s°
r+l
E[u'(s® +s°r + wr — %)) = I y(s® + 7w — %) Ldx
z+l
B M P RO e

= [y(s°+m- S°7r)7_1:|z+1 —E[U'(s® + 7 —s°)]

I

Equating the two expressions we obtain an equation that relates y, the relative
coefficient of risk aversion, with z, the minimal rate of return on the pension fund, to
s°, the optimal share of wealth deposited in a savings account. Figure 3.5 illustrates
the optimal allocation of wealth between savings and the pension fund in this
specialization. The horizontal axis indicates different values of z, the vertical axis
measures y, and the isoquants, and isoregions indicate the optimal values of s° for
(z,y) coordinate pairs.

Overlaying the table are the results of an experiment in which

Portfolio choice

Another area that draws heavily on theories about how people deal with
uncertainty is asset pricing. This section shows how the theory of expected utility can
be applied to a portfolio choice problems. In this game with nature, we assume there
are K securities that have uncertain payoffs as well as a security, such as cash or a
bond, that has a certain payoff. At the beginning of the game, a player is endowed
with nonnegative amounts of the risky securities, summarized by the vector
[@,,...,0x), plus some quantity of the risk free security, g,. She chooses how many
securities of each type to buy subject subject to an overall budget constraint that total
spending on securities she buys is less than or equal to her total wealth endowment
plus the revenue generated from the sale of the securities she sells. Write pi for the
(strictly positive) price of the k" security and qx for the held. We normalize the return of
the risk free security setting po = 1, meaning the price of all the risky securities are
stated in terms of the normalized security, and impose the assumption that gy is
nonnegative, thus ruling out short sales. Therefore the budget constraint may be
expressed as

K
Do P(A—T) <0

At the end of the game, each risky security realizes a return of 7y and the player
receives gk from her holdings of that security. The riskless security yields a payoff of
mo. Consequently at the end of the game she receives in total:
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Z k=(
T q
kYk

The vector of returns (71, ...,7k) IS not know by the player before she makes her
portfolio choice, but she does know the joint probability distribution for this multivariate
random variable. Letting ux denote the mean of 7, an expected wealth maximizer

would maximize:
E{ e = 2, el

By inspection we can see that if all the mean returns are distinct, then the optimal
portfolio is achieved by specializing in the security with highest mean return. The fact
that that investors in the stock market do not typically specialize to such an extent has
lead analysts to conclude that investors are risk averse who hold diversified portfolios
to limit their risk. Accordingly we now suppose that the player maximizes the expected
value of u(c), a concave increasing utility functionin im her consumption c, defined as:

C= Z:zo Tk

She picks the vector (qi,...,gk) Subject to the wealth of her initial endowment and the
K + 1 nonegativity constraints qx > 0. The Lagrangian for this problem is

E[u(Xo) ) [+ A0 pelax =T+ D, Avci

The first order condition for this problem is
E[u'(c)mk] + Apk+ Ak =0
with K + 2 complementary slackness conditions
AQk =0

K
'12,-:0 pi(aj—1;) =0
It is easy to show that because u(c) is increasing and there is a risk free asset, the
budget constraint will be met with equality. Thus 4 is strictly positive and can be

interpreted as the marginal utility of wealth. Supposing the first and second securities
form part of the investor’s portfolio, the complementary slackness conditions imply

A = Aj

o -5)]-0

This is the fundamental equation that characterizes the choice of alternative securities
that are liquidated, or at least reassessed, at the same time. The expected payoffs
weighted by the marginal utility of consumption for each outcome are equated across
those securities that are actually purchased. Suppose, for example, one security only
pays off in two out of a possible ten outcomes; the more the investor buys of that
security, the lower the marginal utility she obtains, and hence the lower the weight that

and
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is placed on the payoffs in those two states, both for that security, and any other
security that pays off in those same outcomes.

To operationalize this framework as an experiment, we now suppose that the
investor’s utility function is quadratic:

u(c) = a1C — a»c?

where a3 and a; are both positive. We also assume that given the endowment the
maximum consumption achieved in any state is bounded above by a1/2a2, an
assumption we make to avoid worrying about the entirely unrealistic possibility that
consumers prefer less wealth to more. In this case for all interior k € {1,...,K}

E[c(mrk —7m0)] =0

Define the return on the individual portfolio as
c

o W+ Zszl O
so that
E[zm(nxk —7mo)] =0
or
E[rmnk] = E[no]E[7m]
Subtracting E[7n]E[7«] from both sides of this equation yields
E[zmnk] — E[zm]E[nk] = —E[n«]E[7m] + E[70o]E[7m]
Applying the definition of a covariance to the left side we see that
coV(mm, k) = —E[mx — mo]E[7rm]
This condition is not only true for each of the individual securities, but also hold for the
market index itself, a fact that can be derived directly, or by including the market index
as one of the K risky securities in the original definition of the problem. Consequently
var(rm) = —E[m — mo]E[7m]
Define the coefficient S as the ratio of the covariance of the stock return with the
portfolio return to the variance of the portfolio return

Bi - cov(zm, )

var(mm)
Combining the two equations to eliminate E[zn] we obtain
E[nx —mo] = BE[7m — 70 ]
In words the excess return on a stock over the risk free rate is proportional in
expectation to the excess return of the individuals portfolio, where the coefficient of
proportionality is Sk as defined above. This equation holds for every individual in the

market who holds quadratic preferences, regardless of the preferences of the other
players.
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If a person only cared about the mean and variance of his total portfolio, he would
only choose amongst those portfolios, which for a given mean, minimized the
variance. In teh experimetn we should show how much we lose by only focusing on
the traded securities and ignoring nontraded securities

The value of information reconsidered

Acquiring information reduces the uncertainty, and hence can be viewed as patrtial
insurance. This remarks suggests that aperson’s attitude towards risk affects their
willingness to pay for infomation. In particular risk averse players might be more willing
to pay for information than risk seekers. The following example explores this
conjecture.

Occupational Hazard

Another example
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Stabus...

4l ] L]

Figure 5.5
Occupational Hazard
A final application to uncertainty. In Figure 3.1 an investor chooses between a
stock that as an uncertain return and a bond. After the choice is made the return on
the stock is revealed. Alternatively, consider figure 3.2
Figure 4.18
The Value of Information

Inspecting Figure 3.10, you should notice that nature does not reveal the true value
of the car until after the consumer has made a decision to purchase it or not.
Figure 4.19
Computing the Value of Information
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Having redrawn the decision tree in this way, it now straightforward to apply he first
rule of strategy to calculate the value of having the car inspected.

Testing the Expected Utility Hypothesis

The examples above illustrate how the assumption of expected utility helps to
rationalize choices made under uncertainty. Indeed the use of expected utility analysis
to study attitudes towards risk is well established in economics and finance.
Nevertheless the hypothesis is questioned, partly because experimental evidence
does not fully support the axioms that justify it. There are essentially three parts to this
guestion. First, do decision makers understand the laws of probability? Second, do
players act as if only the outcome of uncertain events matter, or have they
preferences over how a lottery is conducted? And finally, do players treat outcomes as
mutually distinct events? In this section we review its theoretical basis of the expected
utility hypothesis and elaborate on the experimental methodology used to test them.

Probability law

In other words are people cognizant of logical implications of the facts that no
probability is negative, and that the probabilities over all the elements in a partitioned
outcome space sum to one.

Ambiguity defining the lotteries

We don’t always know the probabilities of the different outcomes, and that can
affect the choices we make. However the fact that the subjective probabilities that
rational experimental subjects form over the outcomes over the outcomes must sum to
one generates some testable restrictions on their behavior. The following experiment
shows that these restrictions are not always satisfied in laboratory sessions.

Ellsberg paradox

Simple and compound lotteries

Are compound lotteries treated the same way as reduced lotteries? We can test to
see if subjects switch their preferred lottery, depending on whether they are certain
they have the choice or not. This test directly compares compound with simple
lotteries.

The previous slides define simple lotteries. A compound lottery is defined by
forming a lottery over several other lotteries. We might consider K lotteries denoted by
Lk where k=1,2, ... ,K. The probability of lottery Lk occurring is given by gk. The
probability of outcome | occurring is then:

pllgl+p2lg2+...+pLligK
where pkl is the probability that lottery k yields outcome I.

A reduced lottery

For example if the probability that you will be neglectful is 0.4,the probability of you
being lazy is 0.3 and the probability of building family capital is 0.3, then you are facing
compound lottery of how you behave, and then how that affects household
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decision-making for the summer. A reduced lottery can be formed by calculating the
odds of each outcome occurring from playing the compound lottery.

Are compound and reduced lotteries fundamentally different?

It is useful to know whether people are indifferent between playing in reduced
lotteries and the compound lotteries which generated them. We consider the following
choices over the lotteries, which seek to reveal whether subjects inherently prefer one
or the other type. Test of expected utility (we could use the discrete form here)

Problem 1: The decision maker chooses between two simple lotteries: Option A:
(9,0) and option B: (0,1).

Problem2: The decision maker faces a lottery in which, with probability (1-r), she
receives x3 and, with probability r, she faces a subsequent choice between two
options, each of which is a simple prospect: Option A: (q,0) and option B: (0,1).

The decision maker faces a lottery in which, with probability (1-r), she receives x3
and, with probability r, she received one of the options listed below, each of which is a
simple prospect. She is required to choose which option to receive before the initial
lottery is resolved. Option A: (q,0) and option B: (0,1). Test of expected utility
continues:

Problem 4: The decision maker faces a choice between two compound lotteries:

Option A: First stage gives x3 with probability (1-r) and the simple prospect
(9,0) with probability r;

Option B: First stage gives x3 with probability (1-r) and the simple prospect
(0,1) with probability r.

Problem 5: The decision-maker chooses between two simple lotteries: Option A:
(rg, 0), Option B: (0,r)

Independence axiom

The basis for expected utility theory is the independence axiom. We motivate the
axiom with an example that captures its essence.

Suppose an employee in a small firm is planning his next weekend'’s activities. In
this case there is no preparation involved in either weekend activity. The weather is a
little unpredictable but will not be unbearable. There are no other relevant factors.
Reflecting on this choice set Friday evening, he decides to tend his outside garden
rather than read inside. However just as he makes his decision, the boss phones
home to say there is an even chance that he might need to work over the weekend.
The probability of this occurring is due to a client’s unusual request and in particular
entirely unrelated to the weekend weather. The independence axiom implies that the
employee will tend his garden if he is not called into work next day. In other words the
fact that the phone call that has halved the chance the employee spends the weekend
at home does not affect the priorities he had already determined.

An abstract way to formulate the independence axiom is in terms of lotteries. We
suppose there are K possible outcomes, events or prizes denoted (p1,...px) and the
j™ lottery, called Lj = (r1j,... 7kj), ascribes a probability of zj to winning the prize p«
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foreach k € {1,...,K}. Thus zj > 0 and

K
ik = 1
2 T

This describes a simple lottery. To define the independence axiom, we not only need
to characterize a simple lottery but also a compound A compound lottery is formed
from J + 1 lotteries. The first lottery simply determines which one of the remaining
lotteries is played.

We also interpret linear combinations as lotteries in which the probabilities of the
compound lottery is found by taking the weighted probabilities of the original lotteries.
Thus the lottery

pLi+ (1 - p)Lj = (Prai + (L - )mj, ... dmwi + (1 — $)mig)
ascribes a probability of ¢z + (1 — ¢)m; to winning the prize pk for each k € {1,...,K}.
The example above can be used to illustrate this notation. In the example suppose
the probablllty of poor weather is -+ 10 , the probability of a client making an unusual
request is -~ 10 : the probability that the boy will have the same choice to make on the
following day is < and the probability of a short queue at the station is . In this
example there are three prizes, an ice cream, p1, a front row seat at the top of a
double decker, p2, and nothing ps. Therefore lotteries in this example are defined over
coordinate pairs (71,72, 73). The lottery from taking a bus can then be written as
(2.0, ) the lottery accepted by walking is (0, - ), while the lottery implied by

taking teh tube is (0, =% ). Finally the compound lotteries the boy faces are

0
[+ ¢ }%(rlo,owa(oa)(ls—o,a)

10

for walking, and (O, 100 ) for taking the bus The mdependence axiom asserts in this

case that if ( 10 'O> (0’ 10 ) then < 100 ' 100 ) (O’ 100
A player ranks lotteries in order of preference, and we use the symbol > to denote

the ordering. Thus L; > L; means that the i lottery is at least as good as the j*.
Loosely speaking L, for example, might be the probability distribution for the weather
when gardening next weekend, and L; might denote the probability distribution of the
guality of the book that could be read next weekend. (This can be made rigorous by
carefully defining exactly what is meant by the events (pi,...pk) but there is no need
to venture into such detail here.)

The preference ordering of the player satisfies the independence axiom if and only
is the following condition holds. For all lottery triplets (L, Li,L;j, ) and any probability
¢ € [0,1], if Li = L; then

¢Li+ (1 —-¢)Ln = gL+ (1 - 9)Ln
This axiom says that in order to rank the two compound lotteries ¢L; + (1 — ¢)L, and

Copyright 2002 by the Trustees of the Leland Stanford Junior University



Chapter 4: Uncertainty 22

¢L; + (1 — @)L, it suffices to know how the two simple lotteries L; and L; are ordered.
Augmenting two lotteries, L; and L; by introducing a new lottery Ly that down weights
each of the original lotteries to ¢ does not affect the original ranking.

Intuitively appealing, the independence axiom yields powerful refutable predictions.
To illustrate these, consider the position of a manager who has just played a major
role in restoring the profitability of his operating unit. One of three outcomes will occur.
He will either be promoted to manage a larger operating unit, or receive a bonus and
be asked to remain in charge of the unit to see if it can become even more profitable,
or his efforts will be ignored. The probability of these mutually exclusive events
occurring are respectively denoted by 71, 7,, and 73, so we may define a lottery over
these three events by the triplet (z1,72,73). We consider his preferences over lotteries
on these events. He certainly prefers a promotion to a bonus, and being ignored is the
worst outcome of all. We interpret the symbolic expression L; > L;j, defined as the two
events L; > Lj but L ¥ L;, to mean that the lottery L; is strictly preferred to L;. Then in
terms of the newly defined notation. the manager preferences can be expressed as
(1,0,0) > (0,1,0) > (0,0,1).

Figures 4.1 and 4.2 show how to graphically represent (z1,72,73). In the first figure

The independence axiom is a sensible premise if you believe there is no
fundamental difference between a compound lottery and its reduced lottery. It states
the following: Consider any three lotteries, denoted by L1, L2, and L3, plus any
number z in the [0,1] interval. Suppose L1 is preferred to L2. Then the simple lottery [z
L1 +(1-z) L3] is preferred to [z L2 +(1-z) L3].

lllustrating the independence axiom

Expected utility theorem

If a rational person obeys the independence axiom then we can construct a utility
function to represent his preferences that is linear in the probability weights. In other
words the independence axiom implies that a person’s utility function can be modeled
as:

plu(xl) + p2u(x2) + . . . + pLu(xL)
or more generally as
EF[u(x)]

where F is a lottery or probability distribution over x and EF is the expectations
operator.

Testing the expected utility theorem

There are two tests of the independence axiom, and by implication, the expected
utility theorem: We can test whether the indifference curves over simple lotteries from
parallel lines or not

Dominance

Deterministic
If alternative A dominates Alternative B deterministically, then we know for sure
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that we will always be better off with alternative A then with alternative B
(completness). This is the wekest of axioms above transitivity and completeness.

The concept of Stochastic Dominance

In this section we show that the postulates of Expected Utility lead to a definition of
two alternative concepts of dominance which are weaker and thus of wider application
than the concept of state-by-state dominance. These are of interest because they
circumscribe the situations in which rankings among risky prospects are
preference-free, i.e., can be defined independently of the specific trade-offs (between
return, risk and other characteristics of probability distributions) represented by an
agent’s utility function.

First order stochastic dominance

Consider two different probability distributions F(x) and G(x). That is F(x) * G(x) for
some real number x. We say that F first-order stochastically dominates G if and only
F(x) £ G(x) for all x. This is formally equivalent to saying that if x is a random variable
drawn from G(x), if y is a random variable that only takes on positive values, and F(z)
is the probability distribution function for z = x + y, then F first-order stochastically
dominates G.

First-order stochastic dominance and expected utility

Now consider a person who obeys the expected utility hypothesis, obtaining
expected utility EF[u(x)] from playing lottery F. Also suppose u(x) is increasing in X.
Then we can prove that if F first-order stochastically dominates G, then he prefers F to
G, that is vG £ VF.

An example

Notice that the the third lottery first-order stochastically dominates the second.

States of nature 1 2 3
Probabilities 4 A4 2
Investrrent Zu 10 100 100
Investment 22 10 100 2000
E4=04c,=44
EZ =444, 5, =779

Table 2.1: Sample Investment Alternatives
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Probability
1.0 4
0.9
0.8
0.7 A
0.6 1
0.5
0.4 A
0.3
0.2
0.1

24

100

T 1 Payoff
2000

Figure 2.8: First Order Stochastic Dominance for the Investment case

Link this to the decision tree examples:

Definition: Let Fa(x) and Fg(x), respectively, represent the cumulative distribution
functions of two random variables (cash payoffs) that, without loss of generality
assume values in the interval [a,b]. We say that Fa(x) first order stochastically
dominates (FSD) Fg(x) if and only if Fa(x) < Fg(X)for all x € [a,b].

10 11 12 13 14

Figure 2.9: First Order Stochastic Dominance: A more General Representation

Theqrem: Let FA(i), FB~(>~<), be two~cumulative probability distributign for random
payoffs x € [a,b].. Then Fa(x) FSD Fg(x) if and only if EAU(X) > EAU(X) for all non
decreasing utility functions U( ).
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If alternative A has first order stochastic dominance relative to alternative B, then
you will always have a higher probability of getting a better deal with alternative A than
with B. Remember the main assumption: U’ > 0 (you prefer more money to less).

Implications of First Order Stochastic Dominance

- FSD also implies mean dominance and geometric mean dominance.

- If A has first order stocastic dominance with respect to B, then the mean of the
distribution of A is higher than the mean of the B distribution.

- FSD implies Second order stochastic dominance, implies third order...ect.

Decision Tree example ......

Second order stochastic dominance

Second-order stochastic dominance

Consider two different probability distributions F(x) and G(y) with the same mean.
That is EF[x]= EG[X]. We say that F second-order stochastically dominates G if and
only for all t: This is saying that if x is a random variable drawn from G(x), ify is a
random variable with mean 0, and that probability distribution function forz=x+vy is
F(z) , then F second-order stochastically dominates G.

Second-order stochastic dominance and expected utility

Assume a person follows the expected utility hypothesis, and thus obtains
expected utility EF[u(x)] from playing a lottery F. We now assume u(x) is concave
increasing in x, implying that the person is risk averse. Suppose EF[x]= EG[x]. Then a
risk averse person prefers F to G, that is vG £ VF, if F second-order stochastically
dominates G.

Example: we should use our lotteries here

Investment 3 Investment 4
Payoff Prob. Payoff Prob.
4 0.25 1 0.33
5 0.50 6 0.33
12 0.25 8 0.33

Table 2.2: Two independent Investments
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Figure 2.9: Second Order Stochastic Domince Illustrated

Definition: Let Fa(x) and Feg(x), be two cumulative probabilty distributions for
random payoffs in the interval [a,b]. We say that Fa(x) second order stochastically
dominates (SSD) Fg(x) if and only if for any x:

jf [Fe(t) — Fa(t)]dt > 0

(with strict inequality for some meaningful interval of value of t).

Theorem: Let Fa(x), Fs(X), be two cumulative probability distribution for random
payoffs x € [a,b].. Then Fa(x) SSD Fg(x) if and only if EAU(X) > EaU(x) for all non
decreasing and concave U().

- If A has a SSD with respect to B then if you are a rule person (i.e. U>0) + you are
risk averse, you will always choose alternative A to B.

Main assumption for SSD: If you are a rule person +you are risk averse : i.e. U>0,
U< 0.
More or less risky = mean preserving spread

X~B =X~A +7Z
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fa(X)

fa(x)

X, Payoff
p=jxﬁ@hx=fxg&ﬁx

Figure 2.10: Mean preserving spread

Theorem: Let Fa(), Fs(), be two distribution functions defined on the same state
space with identical means. Then the following statement is equivalent:
- Fa(x) SSD Fg(x)

_Fs(X) is a mean preserving spread of Fa(X) in the sense of Xg=xs + Z.

Summary

Behaving strategically means that the individual in question acquires and
processes information in a purposeful manner with a view to furthering her own ends,
recognizing those ends may conflict with the goals of other people, and taking account
of how they react to her decisions. This chapter abstracted from the strategic aspects
to amplify the premise that strategic play is based on rational choice under
uncertainty.

We started out with a very simple hypothesis about behavior under uncertainty,
that in games for a single player, individuals maximize the expected value of their
wealth. Computing how expected wealth maximizers should use their information and
its value to them, amounts to calculating the expected value from following differnt
routes. The examples we showed that

Although expected wealth maximization is a useful assumption to make in some
situations, it seems inappropriate for others. A generalization of expected wealth
maximization is expected utility maximization: although more wealth is preferred to
less, people might not be indifferent between gambling some of their wealth, versus
avoiding the gamble and taking its expected value instead. In this case their utitiy is
not linear in weatlh, but might possibily be represented by utlity function, nonlinear but
increasingin in wealth. If the function is concave they are risk averse, and prefer the
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certain expected value of a gamble for sure over the random payoff implied by the
gamble. If the fucntion is convex, they accept all acturially fair bets. Then we provided
some experiments which determined whether players are expected value maximizers
or not. The experiments also reveal the subject’s attitudes towards risk, and provide a
way of recovering their utility function if they are expected utility maximizers. Once we
know their utlity function, we can readily adpat the methods deviced for valuing
infomration. By definition, an expected welath maximizer is risk neutral, but an
expected utility maximizer might be risk averse or risk loving. The examples on
insurance and finanicial investing illustrated how easy it is to work with expected utility
formulations of preferences.

Whether a person is an expected utility maximizer or not depends on whether they
know the laws of probability, and obey the the three axioms that define rational
behavior. to check whether laid out on the three axioms, complete and transitive
preferences, plus the indpendence axiom, that justify expected utilty maximization. We
showed We also provided several tests of the expected utility hypothesis for
investigating whether experimental subjects obey the three axioms, or even the laws
of probability.

Finally we argued that all is not lost if people are not expected utility maxmiaers. In
this case we might expect subjects to show preferences towards payoff probability
distirubtions that first order stochasiticaly dominate 0. Morevoer risk averse plyayers
prefer distributions that also second order dominate others.

The advantage of assuming a person is an expected value maximizzer is that you
only need to know the probability distribution in order to know where is preferences will
be. On the other hand
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