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1 Introduction
The previous chapter concentrated on finding solutions to Markov games that are

characterized by the property that previous choices made in these dynamic games
affect current choices only indirectly, if at all, through the current state of play. This still
leaves open the question as to whether there are any other solutions. Part of the
answer depends on whether there is more than one Markov solution, the other part
on whether the game ends after a finite number of moves or not. To give a more
definitive answer we turn to the special case of stage games.

In stage games the probability transitions linking the stages are not affected by the
choices players make. It follows that players cannot affect the trade off between
current payoffs and future payoffs except through their strategic interactions. It is
natural to ask if all the solutions to the game can be found by treating each stage as
an separate game and piecing together the solutions of the individual stages. Section
3 answers this question. If the probability transition is independent of all the choices
made, if the game is finite (has a finite number of decision nodes), and if every stage
has a unique solution, then the unique solution to the game is found by piecing
together the unique solutions to the stage games partitioning it. In these cases we
argue there is no role for strategic investment

Scope for strategic investment arises when either of the two latter conditions are
violated, and the remainder of the chapter is concerned with what happens when
uniqueness of the kernel games do not have a unique solutions, or when the game
has an infinite horizion. Our discussion is focuses on repeated games, that is a game
subjects played several times with each other without switching roles, but the main
results carry over to stage games without much revision.

If the choices players make affect the probability transitions of reaching
subsequent stages, then the incentives for playing within a stage do not necessarily
align with the player’s incentives within the game, because there may be a trade-off
between the current accruals from completing the stage and the benefits arising from
the stages which follow. We have already studied this phenomenon in teh previous
chapter in our discussion of Markov solutions.

When the probability transitions depend on player choices, it is easy to understand
why ignoring everything but current accruals might be very misleading. More
surprising is the fact that even when all the transition probabilities are exogenous,
concentrating on the set of solutions generated by the stage solutions provides a very
incomplete picture of the solution set for the whole game, the topic of discussion in
Sections 5 and 6.

These two sections also provide insight into the nature of coordination, leadership
and reputation. We explain why these concepts are hard to meaningfully define in
games with unique solutions, and they are often mentioned in the context of repeated
interactions. For example, coordination is not spontaneous, typically requiring the
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same players to repeatedly interact with each other in order to converge to stable
outcomes, a remark we amplify. Firms, both small and large, develop reputations for
product quality and after sales service through dealings with successive customers.
Similarly, retail and service chains and franchises develop reputations for consistency
in their product offerings across different outlets. Politicians cultivate their aspirations
for leadership through their repeated personal interactions within a public forum. In
Sections 5 and 6 leadership is defined as a quality that facilitates coordination to reach
one of several solutions , that is a self enforcing agreement in a game that supports
multiple solutions. Similarly reputations are established and maintained when players
reach an implicit understanding about which solution is being played. We treat the tacit
selection of a pure strategy solution achieved through coordination as a self enforcing
agreement, a topic we will revisit in Chapter 14 on contracts.

2 Unique Solutions to Stage Games
Much of the intuition and some of the results on repeated games also apply to the

whole class of stage games. Thus our discussion of stage games in this chapter will
focus on repeated games. It is natural to ask whether the predicted outcomes of the
repeated game can be found by simply repeating the predictions of a typical round.
Yet because the strategy space for the repeated game is more than the product of the
number of strategies in one round and the number of rounds, it is not obvious why this
should be the case. In the sections which follow we seek to resolve this issue. First we
focus on games which are repeated a finite number of times, then on infinite horizon
games where payoffs are discounted over time.

We begin our analysis of the solution to games with stages
2.1 Textiles

We first consider repeated games in which the kernel has a unique equilibrium.
Figure 10.1 depicts the strategic form of a textile industry, where two producers must
decide between using local unionized labor force in production versus foreign child
labor. If either one of the firms chooses the to use local labor, the other one will be
heavily penalized from tariffs supported by organized labor ostensibly to punish the
exploitation of impoverished children by multinationals. Furthermore the firm using
unionized local labor incurs substantial penalties by union action from switching its
textile mills to overseas. We suppose the kernel game is repeated 3 times.
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Figure 12.5
Textile production

The repeated game can be solved using the principle of subgame perfection
developed in Chapter 8. The smallest subgame in this repeated game is the
simultaneous move games which begins at the third period. This subgame
corresponds to the kernel game itself. It is evident from Figure 12.5 that the unionized
firm has a dominant strategy to use local labor. Applying the rule of iterated
dominance, the non-unionized firm uses local labor as well. This strategy profile
constitutes the unique equilibrium yielding a payoff vector of 3,5 to the respective
firms.

Consider now the strategic form of the reduced subgame beginning in the second
period. To compute the payoffs in each cell we add a payoff of 3 to the payoffs that the
non-unionized firm receives, and a payoff of 5 to the unionized firm. Here the critical
point to notice is that because we are adding a constant number to each of the payoffs
each firm receives one of then inequities that determine equilibrium in the kernel game
are affected. Folding back, the strategic form of the reduced game starting at period 2
is given in Figure 12.6.

Figure 12.6
Reduced subgame for textile industry

Thus drawing upon the local labor force is also a dominant strategy for the
unionized firm in the second period, and the principle of iterated dominance applies
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equally to the nonunionzed firm. Once again the unique equilibrium for the reduced
game is for neither firm to employ foreign child labor, and the payoffs to both firms are
6,10.

The strategic form for the reduced game starting at the beginning of the first period
are derived in a similar manner to the strategic form for the reduced game starting in
the second period. This time we add the vector of 6,10 to the payoffs in the cells of
the kernel game’s strategic form. See Figure 10.3. The solution is derived in exactly
the same way. We conclude that both firms employ local labor for all three periods of
the game.

Figure 12.7
The reduced game in strategic form

2.2 A general result
The fact that the solution to the kernel of the textile game is unique explains why

such a tight characterization of the solution to the repeated game is obtained. As we
fold back the solution of a subgame to form the reduced game that precedes it, the
same value is added to each cell of the kernel game for any given player. As we have
seen this value might differ across players, but it does not depend on which move a
given player chooses in the preceding reduced game. This feature is also present in
stage games that consist of kernels with unique equilibrium. Consequently a finite
stage game with a unique equilibrium supporting each kernel game, supports a unique
equilibrium, formed from the sequence of the kernel equilibrium. We state this result
as a theorem .

Theorem Suppose every kernel game of a finite stage game has a unique
solution. Then the stage game also has a unique solution, which is the sequence of
solution to the kernel games.

These examples and results show that neither reputation nor leadership count
when all the kernel games in a finite horizon stage game have a unique equilibrium.

Reputations and leadership can only arise when at least one of the following three
conditions is present:

1. The probability transitions are choice specific
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2. There are multiple solutions to at least one of the kernel games.

3. The kernel games are repeated indefinitely.
The rest of this chapter now explores these three situations in detail.

3 Multiple Equilibrium in Finite Horizon Repeated
Games

Having investigated finite horizon stage games in which every kernel game has a
unique equilibrium, there are two directions to take. One direction is to explore
relaxations of the requirement that every kernel game supports a unique equilibrium.
The other is to extend the analysis to infinite horizon stage games. This section
pursues the first direction; in the next section we take the second direction. In both
sections we concentrate on repeated games, although the basic intuition carries over
to the larger class of stage games. In the previous chapters we already encountered
games with multiple solutions, but have deferred until now an extended discussion
about them. We begin this section with a word of caution, that why players might settle
at one solution versus another, and how quickly they converge, are currently topics of
debate for researchers, who might ultimately lead us to doubt whether solution
refinements beyond backwards induction and dominance principles are very
compelling if they are not unique.

Studying coordination games provides a framework for exploring about these
issues, and these are the first items on our agnnda. In coordination games all the
solutions have identical payoffs, or more generally all the outcomes are ranked by
players the same way, so they provide an ideal medium for studying how easily
players can alight on a focal point of mutual gain.
3.1 Coordination

Coordination games are marked by the absence of conflict between players. Their
objectives are fully aligned. This does not imply they receive the same payoffs, only
that players rank all the solution outcomes the same way, from the best to the worst,
and therefore could have the same utility function. Coordination games are frustrating
to play if there are multiple solutions to the game that tie for the top rank. Unless
players agree in advance upon a specific solution, then they all receive a lower payoff
than they would attain if there is no opportunity to reach a prior accord.

Consider, for example, the following game called Coffee Break. Suppose Romeo
and Juliet have no means of communicating their intense feelings for each other to
arrange a time and place to meet. In the following game if they both take coffee at the
same time and place, then each has an excuse to engage in small talk. Otherwise no
meeting takes place. The strategic form of the game is illustrated below.
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Figure 12.12
A coordination game

There are ten pure strategy equilibrium (and many more mixed strategy
equilibrium, all of which achieve lower payoffs). Furthermore every choice is part of
exactly one pure strategy equilibrium. When will a spontaneous meeting occur? If
each player initially chooses a time randomly, then the probability of meeting each
other is one tenth.

One reason why players do not behave according to the predictions of game
theory is that the solution concept requires coordination. For example consider Figure
11.1, which displays a simultaneous move game where there is no conflict between
players about the objective but ambiguity about how to achieve it. Applying the
analysis from Chapter 8, there are two pure strategy Nash equilibrium achieving a unit
payoff, and a third mixed strategy equilibrium where players mix with equal probability,
yielding an expected value of one half each. If the players collectively pick top left or
bottom right they are both rewarded with one unit, but otherwise neither receives
anything. Unless prior communications between players permits them to reach an
understanding about how the other one will move, it is not obvious why either player
would make a particular choice. The principles we have developed nothing to say
which equilibrium will be selected and whether repetition will lead to the same
outcome. Are we to assume that no systematic patterns will emerge in the data?

The simple example shows that imperfect information games supporting pure
strategy equilibria containing inner loops that are not dominance solvable pose a
further challenge to players even if they are not complicated to solve, because they
require more coordination to reach those equilibrium. In this case there are no general
rules for guiding the coordination, and so the knowledge is sometimes specific to the
team or players within the game, within a class, a community or perhaps a culture. By
definition coordination is not spontaneous, typically requiring the same sets of players
to repeatedly interact with each other, although not necessarily in the same roles.
Studying repeated games gives us the opportunity to investigate the phenomenon of
coordination.

An alternative hypothesis is that the mixed equilibrium strategy profile will be
played every round until a positive payoff occurs, at which point the players will switch
to the pure strategy by repeating the move they just made. Thus the number of

Copyright 2008 by the Trustees of the Leland Stanford Junior University



MILLER AND PRASNIKAR: STRATEGIC PLAY,draft 7

players achieving a payoff rises geometrically at the rate of one half at each
subsequent stage. If a meeting occurs, we might assume the players will coordinate in
future by agreeing when to meet. Otherwise we suppose that players pick their coffee
breaks as before. In that case, a meeting takes place with probability 1/10 on the first
day, 9/100 the second day (9/10 times 1/10), 19/1000 the third day and so on. If there
are N players who play an analogous game, an induction argument demonstrates that
the probability of them spontaneously meeting together (in a one shot game) is 101-N.
Now we change the structure of the game by giving one player, called the leader,
power to send a message to the others proposing a meeting time. This immediately
(and trivially) resolves the coordination problem, and establishes the value of
coordination to the organization. It also illustrates the potential rent leaders can extract
by reducing the coordination that takes place without their active involvement.

Focal points that distinguish themselves as more prominent solutions. Leadership:
We define a leader as someone who chooses a pure strategy solution in a games
where there are multiple pure strategy solutions. Note that leaders do not have an
enforcement role, since by definition an equilibrium is self enforcing. In the examples
we have reviewed on meetings, the coordination or leadership function is easy to play.
We would not expect anyone to extract rents from performing this role because of
competitive pressure to reduce the rent. However this need not be the case.
Sometimes experience or skill is necessary to recognize potential gains to the players
in the game.

Exercise Accordingly, some laboratory exercises in this chapter focus on how
well players coordinate their choices between different equilibrium.
3.2 Conflicting Objectives

The examples of coordination games reviewed above illustrate the value of implicit
or explicit agreements made before play begins. How such agreements are reached is
the topic of the next chapter. In the previous examples it was easy to identify the set of
coordinated strategic profiles. But recognizing possibilities for coordination are not
always so evident. Let us consider the following example, this time as a finitely
repeated game.

What happens when there are several equilibrium in the kernel game? We will
see that the number of solutions in the repeated game increase dramatically. The
kernel games we have studied above have multiple equilibrium.

Consider a partnership between two workers teamed together for N independent
contracts and then disbanded. The partners individually and simultaneously choose
between performing sloppy or diligent work. The N clients do not observe how hard
each partner works but can assess the quality of the resulting product. Consequently
each partner is paid the same wage, but that wage paid varies with the quality of the
overall work. Since the quality of the work is evident, and each partner knows his own
effort, he can also deduce how hard his partner worked. If both partners perform
diligently, a client pays them $1,000 each, while the effort and work opportunities
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forgone are valued at $400. In this case each partner nets $600. If one worker is
diligent but his partner performs sloppy work, then this shows in the final product and
the pair are only paid $800 each. The diligent worker nets only $400 in that case.
However the worker who shirks reduces the opportunity cost of his time by completing
other jobs and have more energy left for his pastime activities. The opportunity cost of
performing a sloppy job is only $100 rather than $400. Consequently the worker who
shirks nets $700 providing his partner is diligent. If, however, both partners are sloppy,
their poor output is more evident, and the client pays them only $400 each, for a net
reward of $300. We model the partnership as a N fold repeated game for two players.
The kernel is a simultaneous game with the same two actions for both players, work or
shirk, illustrated in Figure 12.13.

Figure 12.13
Nice and Nasty

First we solve the kernel game. There are no dominated strategies in this game, so
the principle of iterated dominance does not apply. Note that working is a unique best
response to shirking, and vice versa. Therefore there are two pure strategy Nash
equilibrium, namely (work, shirk) and (shirk, work). There is also a mixed strategy
equilibrium found by equating the payoffs from working with the payoffs from shirking,
when the partner mixes. Let  denote the probability that a player works. Then his
partner is indifferent between shirk and work if and only if

600  4001 −   700  3001 −     1/2
In multiple rounds of this game, the arguments about subgame perfection can be

applied to show that any sequence of equilibria for the kernel game is part of an
equilibrium strategy profile for the repeated game itself. An indication of how many
equilibria there are can be given by showing which average payoff vectors are
possible in equilibrium. that can arise from playing the kernel game a large but finite
number of times. Simply repeating the pure strategy equilibrium produces (1,4) and
(4,1), and the law of large numbers assures us that the average payoff from playing
the mixed strategy equilibrium yields payoffs arbitrarily close to (8/3, 8/3). Supposing
the players chose (large, small) for every even round of the game and (small, large)
every odd round, their average payoff would be (5/2,5/2). Indeed any average payoff
in the convex hull of the three kernel equilibrium points is asymptotically possible by
judiciously choosing the proportion of times each of the equilibria are played. For
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example (pick a point in the interior and describe how to do it)

Average payoff to the first firm

Average payoff to 
the second firm

(1,4)

(4,1)

(8/3,8/3)

Figure 12.14
The limit set of average payoffs from repeatedly playing Nice and Nasty

The dots in Figure 12.14 show what average payoffs are possible in a three round
game from playing different permutations of the solutions to the kernel game. As the
number of rounds increase so do the number of dots. The convex hull in Figure 10.7
shows average payoffs that are possible from repeating equilibria of the kernel games
indefinitely. There are, however, many other possible equilibrium outcomes that arise
in the repeated game because the players choose dynamic strategies, that is making
their choices contingent on play in previous rounds. For example suppose N  3, and
the partnership played work,work in the first round for 600,600, followed by
work, shirk yielding 400,700 and finally shirk,work in the third round to obtain
700,400. This yields an average payoff of 567 to each player. Can this average
payoff be attained by the team in equilibrium?

If this is a e second player deviates by forcing (1,4) in the first round, then both
players settle for (4,1) in the two remaining rounds. Similarly if the first player deviates
by forcing (4,1) in the first round, then both players agree to (1,4) in the remaining
rounds. We now show that this is a self enforcing agreement, and therefore a pure
strategy solution to the game.

Can Bond and Octopussy both earn more than 6 in a three period game? The
outcome {(3,3), (1,4), (4,1)} comes from playing: {(bnice1, nice1), (nice2,nasty2),
(nasty3, nice3)}. Is this history the outcome of a solution strategy profile to the 3 period
repeated game?

Strategy for Bond
Round 1: nice1
Round 2: (…, nice1)nice, otherwise nasty2
Round 3: (nasty1, …)nice, otherwise nasty3

Bond should be nice in the first round. If Octopussy is nice in the first round,
Bond should be nice in the second round too. If Octopussy is nasty in the first round,
Bond should be nasty in the second. Bond should be nasty in the final round, unless
he was nasty in the first round.
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Strategy for Octopussy
Round 1: nice1
Round 2: (…, nasty1)  nice, otherwise nasty2
Round 3: (nasty1, …)  nasty3 otherwise nice3
Octopussy should be nice in the first round. Then if she followed her script in the

first round, she should be nasty in the second. However if she forgot her lines in the
first round and was nasty, then she should be nice in the second round. If Bond has
was nasty in the first round, Octopussy should be nasty in the final round, but nice
otherwise.

Verifying this strategy profile is a solution. Note that the last two periods of play,
taken by themselves, are solutions to the kernel game, and therefore strategic form
solutions for all sub-games starting in period 2. Checking for deviations by Bond in the
first round To check whether being nice is a best response for James bond given that
Octopussy chooses according to her prescribed strategy we compare:

1. (A1, a1) 3
2. Otherwise (A2,b2) 1
3. Otherwise (B3,a3) 4

---
8

With
1. (B1,a1) 4
2. Otherwise (A2,b2) 1
3. (B1, a1) (A3,b3) 1

---
6

Since 8 exceeds 6 row player does not profit from deviating in the first period. A
similar result holds for the column player. Therefore the strategy is a SPNE.
Establishing the 3,3, 4.1, 1,4 is the outcome of a solution to this game, shows
that average payoffs exceeding 2 1

2 can be achieved by both players in equilibrium.
Extending this example a little further, suppose the game lasts a finite number of

periods, denoted by N, and consider an extension to the agreement as follows: For the
first N − 2 periods, 3,3 is played, the game ending with (4,1) and finally (1,4). If the
second player deviates by forcing (1,4) in the first round, then both players settle for
(4,1) in the two remaining rounds. Similarly if the first player deviates by forcing (4,1)
in the first round, then both players agree to (1,4) in the remaining rounds. This
argument shows that 3 − 1

N  can be achieved as an average payoff in the game.
Following the arguments we made earlier, the interior of the triangle with vertices
1,4, 3,3 and 4,1 can be reached in a solution to a finite horizon game
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Average payoff to the first firm

Average payoff to 
the second firm

(1,4)

(4,1)

(8/3,8/3)

(3,3)

Figure 12.15
Average payoffs that are unattainable in a one period game

There is nothing optimal about self enforcing agreements. What is the lowest sum
of payoffs in the 3 period repeated game? Unforgiven What is the lowest sum of
payoffs in the 3 period repeated game that can be supported by a SPNE?

The outcome {(0,0), (1,4), (4,1)} is induced by playing {(nasty1, nasty1),
(nice2,nasty2), (nasty3,nice3)} Can this outcome be supported by a SPNE? The
outcome {(0,0), (1,4), (4,1)} is induced by playing {(B1, b1), (A2,b2), (B3,a3)} Strategy
profiles supporting Unforgiven

Strategy for Clint Eastwood:
Round 1: nasty1
Round 2: (…, nice1)  nasty2 otherwise nice2
Round 3: (nice1, …)  nice3 otherwise nasty3
Strategy for the Gene Hackman:
Round 1: nasty1
Round 2: (…, nice1)  nice2 otherwise nasty2
Round 3: (nice1, …)  nasty3 otherwise nice3

Checking for a solution. Using the same methods as before one can show this is
also a solution strategy profile for the three period game. More generally by punishing
any deviation from the equilibrium path with the unfavorable kernel equilibrium
repeated until the end of the game guarantees any payoff pair that averages more
than the value given by individual rationality. Suppose the agreement for a three
period game required both players choose 0,0 in the first period, again followed by
4,1 and then 1,4, yielding an average payoff of 1 2

3 . Using the same punishment
strategy for any player who deviates, the same methods show that this is outcome of
another solution to the game. Analogous to before this can be extended to show that
1  1

N  or something like that (to be fixed up) can be achieved. Figure 12.16 now fills
in the area in the usual fashion.

Copyright 2008 by the Trustees of the Leland Stanford Junior University



Chapter 14: Infinite Horizon 12

A verage payoff to  the first firm

A verage payoff to  
the second firm

(1,4)

(4 ,1)
(1 ,1)

(3 ,3)

Figure 12.16
Equilibrium average payoffs in the long, finite horizon repeated game

Notice that no agreement can lead to a player receiving less than 1 because the
player can unilaterally achieve that by playing on every round. further more nothing
can be achieved outside of the 1,4, 3,3 and 4,1 frontier, since there are no
strategies that deliver that payoff. They are simply not technologically feasible in this
game. Yet every other payoff can be achieved as the outcome to the repeated game if
there are a sufficient number of rounds. A concise way of showing what can be
achieved in two player finite horizon two player games is to first graph the payoffs that
are feasible as in Figure 12.17.

(0, 0)

(3,3)

(4,1)

(1,4)

Row firm  
average payoffs

Column firm  
average 
payoffs

This area shows what 
average payoffs in a 
finitely repeated game 
are feasible given the 
firms’ strategy spaces.

Figure 12.17
Feasible payoffs

Then we define individual rationality, and graph the individual rationality
constraints. See Figure 12.18.
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0, 0

(1,1)

(4,1)

(1,4)

Individual 
rationality 
coordinate 
pair (1,1)

Row firm 
average payoffs

Column 
firm 
average 
payoffs

The area, bounded below by 
the dotted lines, gives each 
player an average payoff of 
at least 1. It is guaranteed 
by individual rationality.

Figure 12.18
Individual rationality

Average payoffs in equilibrium are now found by taking the intersection of the two
areas, as Figure 12.19 shows.

(0, 0)

(1,1)

(3,3)

(4,1)

(1,4)

Column firm 
average payoffs

Row firm average payoffs

Figure 12.19
Average feasible payoffs meeting individuality constraints

The theorem in the next slide states that every pair in the enclosed area represents
average payoffs obtained in a solution to the finitely repeated game. This theorem is a
specialization of a result called the folk theorem, that extends to games with more than
two players with minor modifications. It is an indeterminacy result, that (unfortunately)
limits the predictive power of game theory when the kernel of the game supports
multiple solutions. Folk theorem for two players:

Theorem Let 1 be the worst payoff that Player 1 receives in a solution to the
one period kernel game, let 2 be the worst payoff that Player 2 receives in a solution
to the one period kernel game, and define   1,2 . In our example   1,1.
Any point in the feasible set that has payoffs of at least  can be attained as an
average payoff to the solution of a repeated game with a finite number of rounds.

4 Infinite Horizon Games with Discounting

Copyright 2008 by the Trustees of the Leland Stanford Junior University



Chapter 14: Infinite Horizon 14

Earlier in this chapter we claimed that the solution to a stage game is unique if the
solution to each stage is unique and if there are only a finite number of rounds or
periods. The folk theorem establishes that if there are multiple solutions to at least one
of the stages, stage games support many more solutions than can be counted by the
permuting the solutions of their component stages. The other factor limiting the
applicability of the uniqueness result we derived is that the stage game have a finite
number of stages. Infinite horizon games last an indefinite number of periods, either
because they simply never end, or because at the end of each period, there is a
strictly positive probability of continuing the next period. When players realize that their
relationship does not have a foreseeable terminal node, new possibilities for
cooperation and mutual benefit emerge. This section relaxes the other qualification of
the uniqueness result, by analyzing games where each stage has a unique solution,
but there are an infinite number of rounds. We now show how and when cooperative
behavior between group members can be enforced despite their individually conflicting
objectives, by credibly threatening strategies that punish actions which harm a
collective interest.
4.1 Perfect Monitoring

To show the main result in this section we consider an infinite horizon repeated
game with discounting between two players who move simultaneously each period
and observe the outcome at the end of the period. We label the players as General
Motors and Ford, and imagine that at one point in history these two car manufacturers
accounted for most of the automobile sales in the North American market. For
simplicity we assume that dealers are responsible to the directions from central
management, and there are only two prices at which either manufacturer would
consider selling its cars, cheap and expensive. The net profits (per period) from
marketing cars at the lower price are greater than choosing the higher price,
regardless of what marketing strategy the other firm chooses. Consequently selling
cars cheaply is a dominant strategy. Hence there is a unique solution in the one stage
game for each firm to charge the low price. Furthermore the uniqueness theorem we
derived earlier in this chapter implies that both Ford and G.M. would price their cars
inexpensively every period in a repeated game with a finite horizon.

In addition to the assumptions made above that uniquely determine the solution to
a finitely repeated game, suppose the profits to both firms from charging high prices
are greater than if both firms charge low prices. This additional assumption implies
that within each stage the configuration of payoff inequalities mimics the prisoner’s
dilemma.

To derive the solutions to this infinite horizon game with discounting, we now
introduce some notation for analyzing the game. Denote by ent,cnt the choice set for
the nth player in period t, where e1t stands for Ford selling expensive cars in the tth

period, c2t means General Motors sells cheap cars in that period and so forth. Let
st ≡ s1t, s2t ∈ ent,cnt  ent,cnt denote the respective choices made by Ford and
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General Motors in period t. A strategy for Ford is a complete set of plans about what
to charge in each period, a function of all the choices that have been made by both
players in the past. Thus s1t can potentially depend on the history of pricing choices
s1, s21

t−1 made up until and including period t − 1.
We denote by nst the current profits of the nth player in period t as a function of

the players’ choices made at that time, and assume that current profits are converted
to present value units with a constant interest rate, denoted by r. Defining the discount
factor as   1  r−1, the present value of profits Ford obtains in period t may then
be expressed as t1st, and a similar expression, t2st, holds for General
Motors. The objective function for the nth player is

∑
t0

T
tnst

where T   in this application. Note that in this formulation of the game we have not
allowed for the possibility that future payoffs might be uncertain, because nature has
no direct role in the game, and we shall restrict ourselves to considering pure strategy
equilibrium solutions.

The assumption that marketing cheap cars is a dominant strategy for Ford in a
single period game played at time t is captured by the inequalities

1c1t, s2t  1e1t, s2t

for s2t ∈ e2t,c2t. Similarly marketing cheap cars is a dominant strategy for General
Motors in a single period game played at time t if and only if

2s1t,c2t  2s1t,e2t

for s1t ∈ e2t,c2t. Finally both firms make more profits when they both sell expensive
cars compared to when they both sell cheap cars corresponds to the pair of
inequalities

ne1t,e2t  nc1t,c2t

for n ∈ 1,2. Table 12.20 depicts the one period simultaneous move game upon
which the repeated game is based.

Figure 12.20
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The strategic form of a kernel game
In the finite horizon case T  , and the arguments we discussed for finite horizon

games extends in a simple way to this class of games. Since c1t,c2t is the unique
solution to a single stage game played at t, the solution to a finite horizon game
formed from repeating the stage is to play it. Thus the unique solution to this game is:

c1t,c2tt0
T

It is straightforward to check that this strategy profile is also a solution to the infinite
horizon case (when T  ). Are there any other solutions?

We reconsider a class of strategies that we introduced in our analysis of multistage
finite horizon games, called trigger strategies. These strategies support solutions
where strategic investment occurs. Suppose Ford markets expensive cars unless or
until General Motors offers a cheap car, at which point it offers only sells cheap cars
thereafter. The sequence of periods during which only expensive cars are marketed is
called the cooperative phase, while the sequence of periods during which both firms
sell only cheap cars is called the punishment phase. In terms of the notation we have
already developed suppose:

s1t 

e10 if t  0
e1t if s  e1,e2 for all 0 ≤   t
c1t otherwise

Regarding General Motors, let us similarly assume

s2t 

e20 if t  0
e2t if s  e1,e2 for all 0 ≤   t
c2t otherwise

Are trigger strategies a solution to this game? To determine whether the trigger
strategies are a solution, we only need to check whether the subgames are solved by
them. There are two kinds of subgames, depending on whether somebody has
cheated in the past or not. Initially let us assume that Ford and/or General Motors has
offered a cheap car at some past period   t. In that case the trigger strategy profile
is in the punishment phase and requires both manufacturers to market cheap cars. In
this case the value to Ford of both players following the trigger strategy from period t
onwards is thus

∑
t


1c1,c2  t1c1t,c2t ∑

t1


1c1,c2

whereas if Ford deviated from the trigger strategy by marketing an expensive car in
period its value is

t1e1t,c2t ∑
t1


1c1,c2

The loss to Ford from deviating by marketing an expensive car in period t is
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t1e1t,c2t − 1c1t,c2t  0
A similar calculation applies to General Motors. It immediately follows that the
punishment phase of the trigger strategy solves subgames in which a cheap car has
been marketed in the past. Another of putting this is to say that the punishment phase
is self enforcing.

Now consider game histories leading up to period t in which no cheap car has ever
been marketed by either firm, including the first period. If both firms follow the trigger
strategy, they will market expensive cars in period t, so next period the history will be
e1,e20

t . If they continue following the trigger strategy in periods   t, the history
will be successively updated to e1,e20

−1 and the firms will never market a cheap
car. In other words the cooperative strategy is self sustaining. Therefore at period t in
a cooperative phase the value to General Motors from both manufacturers following
the trigger strategy is

∑
t


2e1,e2  t2e1t,e2t ∑

t1


2e1,e2

If, however, General Motors defects from this strategy during the cooperative phase in
period t by marketing a cheap car, and both firms follow the trigger strategy in all other
respects, then Ford would market an expensive car in period t,but deviating will be
instigate the punishment phase in period t  1, never to end. Thus both firms would
market cheap cars from period t  1 onwards, and at period   t the history of car
marketing will be

e10,e20,… , e1,t−1,e2,t−1, e1t,c2t, c1,t1,c2,t1,… , e1,−1,e2,−1

Therefore the value to General Motors of defecting from the trigger strategy if is in the
cooperative phase is

t2e1t,c2t ∑
t1


2c1,c2

Taking the difference of these expressions, the net value for General Motors of
deviating from the trigger strategy when it is in the cooperative phase at period t is

t2e1t,c2t ∑
t1


2c1,c2 − t2e1t,e2t −∑

t1


2e1,e2

Factoring out and combining the terms in the summation we obtain

t 2e1t,c2t − 2e1t,e2t ∑
1


2c1,c2 − 2e1,e2

Now applying the formula for summing a geometric series yields

t 2e1t,c2t − 2e1t,e2t 


1 −  2c1,c2 − 2e1,e2

This expression has an intuitive interpretation. The current benefit to General Motors
from defecting in the cooperative phase is

2e1t,c2t − 2e1t,e2t
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while the cost is the present value from remaining in the punishment phase compared
to the profits that would have been made if the firms had been made in the
cooperative phase, which is the product of loss per period, 2c1,c2 − 2e1,e2,
and the value of an annuity of one unit 1 − −1. In order for General Motors to break
the trigger strategy, the immediate gain to them from defecting and selling cheap cars
while Ford is still selling expensive ones must exceed the punishment of lower profits
that inevitably follows. Again a analogous expression can be derived for Ford. A
necessary and sufficient condition for a trigger strategy to solve this game is that
neither firm benefits from unilaterally deviating in the cooperative phase.

Before embarking on a numerical analysis, we note that the key to the inequalities
are the ratios of the payoffs. In an empirical application it may be useful to normalize
by one of the payoffs, say ne1t,e2t, and proceed in those terms.
4.2 A numerical example

To help develop a quantitative sense of the factors involved, suppose the two
companies are symmetric to each, meaning that they earn the same payoffs when
they are in the same relative position. That is

1e1t,e2t  2e1t,e2t

1c1t,c2t  2c1t,c2t

1e1t,c2t  2c1t,e2t

1c1t,e2t  2e1t,c2t

Table 10.8 illustrates the strategic form of the kernel game when payoffs are
symmetric. In this example

1e1t,e2t  2e1t,e2t  10
1c1t,c2t  2c1t,c2t  5
1e1t,c2t  2c1t,e2t  20
1c1t,e2t  2e1t,c2t  0

Copyright 2008 by the Trustees of the Leland Stanford Junior University



MILLER AND PRASNIKAR: STRATEGIC PLAY,draft 1

Figure 12.21
Suppose the gestation period between the time a player defects and the period the

other player can retool and produce an inexpensive car is between two and three
years. This might seem too short but for the fact that industry intelligence is reveal to a
rival what a firm’s intentions are before the product is introduced to the marketplace.
According we suppose initial that the interest rate is 25 percent, implying   0.8.
Then the value to each firm from sustaining the cooperative phase is

1e1t,e2t 1  r
r

 10 1.25
0.25

 50
and the value of each firm upon reaching the punishment phase is

1c1t,c2t 1  r
r

 5 1.25
0.25

 25
Therefore the value to each firm of defecting from the cooperative phase is

1c1t,e2t  1c1t,c2t 1
1  r

1  r
r

 1c1t,e2t  1c1t,c2t 1
r

 20  5 1
0.25

 40
It follows that cooperation with both firms marketing an expensive car is a solution to
this repeated game.
4.3 Factors determining cooperation

The arguments we have used suggest that in frameworks of the sort described
above, cooperation can be introduced at the very beginning of the game, and be
sustained by a credible threat that is never imposed throughout the course of play, or
that cooperation cannot be achieved at all. We remark that even if the parameters of
the problem permit cooperation, there is still typically scope for intermittent
cooperation and reversion to punishment strategies. As we found in finite round
games with multiple solutions, there are many other solutions to the infinite horizon
game when the cooperative solution is attainable. However coordinated players have
an incentive to avoid such solutions, if they can reach an agreement about the gains
from trade. Consequently the framework does not provide a satisfactory explanation of
why cooperation is sometimes an intermittent phenomenon.

Our discussion highlights three factors that determine whether a relationship
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between strategic partners is cooperative or adversaries. To recapitulate, the three
factors are:

1. the gains of maintaining, compared to the benefit of defecting from, a
cooperative arrangement

2. the losses from destroying a cooperative arrangement and reverting to
an adversaries relationship

3. the duration of the relationship measured in discounted time (to reflect
the probability of survival and the interest rate).

In the applications above, one of two possibilities emerges. Either cooperation can
be maintained for the whole game, and the credible punishment threat is never
administered, or cooperation can never be achieved. We can extend this result.
Suppose the three factors described above are known for all future periods. Then
either cooperation is established at some point and maintained thereafter or
cooperation is never established. To summarize, cooperation never breaks down
when all the factors are known in advance and the players are rational. This is what
characterizes stable relationships.

There are several reasons why cooperative relationships can break down or revert
to adversaries confrontations:

1. When the activities of one or more players cannot be monitored

2. When one or more of the three factors described above is a time
dependent stochastic process

3. If some of the payoff relevant information to one player is hidden from
the other one.

Such situations may be described as volatile relationships, and we now seek to
analyze them.
4.4 Time dependent factors

A second reason for volatility in relationships is that the costs and benefits of
cooperation may vary stochastically over time. Note that if there was a fixed point in
time when both parties knew that the conditions for cooperation would not be met,
then the arguments we applied in the finite horizon game would apply, and the unique
solution to the game would preclude any cooperation.

We now suppose there is some chance of fluctuating between regimes where the
benefits of cooperating are high to a regime were those benefits are minimal. In the
example displayed below, automobile demand is sometimes high and sometimes low.
After each round is played the stage game ends with probability of 0.1, and probability
of 0.9 of continuing at least one more round. If automobile demand is high in the
current period, the game continues with probability 0.7 into another round of high
demand, and with probability 0.2 into a round where demand is low. Once in a low
demand state of demand, it a little more likely to stay there than return to the high
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state, the odds being 5 to 4. In both stages of this game, offering a rebate is a strictly
dominant strategy for both companies. However the immediate gain of defecting from
a cooperative strategy where neither company ever offers rebates is greater in the low
demand state than the higher one, 7 versus 1.

Figure 12.22
How much cooperation can be sustained? It is easy to check that if high demand

prevailed every period, that is the stage transition weights were 9,0,1 instead of
7,2,1, then a grim trigger strategy would support the cooperative solution outcome of
no rebates, whereas if low demand prevailed every period, and the transition weights
were 0,9,1 instead of 4,5,1, then the unique solution would induce both firms to
offer rebates every period.

To check whether cooperation can be sustained throughout both stages we first
calculate the value of each firm when neither deviates, and then compute the value to
a firm from deviating by offering a rebate at either stage when the maximal penalty is
imposed. If the value of the latter quantity exceeds the value of the former quantity, we
conclude that cooperation throughout the whole game is unsustainable. We denote by
v11,v21 the value of each firm in the two states when neither ever offers rebates.
These values must satisfy the recursion:

v11

v21


10
3

 0.8
0.75 0.25
0.5 0.5

v11

v21


1 − 0.80.75 −0.80.25
−0.80.5 1 − 0.80.5

−1
10
3

 10
4 −2
−4 6

−1
10
3

 10
28

6 2
4 4

10
3
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The top line of the first equality can be explained as follows. The value of being in the
high demand state when neither firm ever offers rebates, v11, is current profits, 10,
plus the remaining value of the firm next period discounted by the probability of
continuation, 0.8. The value of the firm next period is either v11, which occurs with
probability 0.75, or v21, which occurs with probability 0.25. The bottom of line of the
first equation can be justified in a similar manner. Finally the second equality is found
by making the vector v11,v21 the subject of the equation. Upon inverting the matrix in
the third equality we obtain the solution v11,v21 . The same technique can be
applied to calculate the value of the game from playing the dominant strategy for the
kernel games. We solve for v12,v22, the value of each firm when both always offer
rebates, by substituting 10,3 with 5,2 and v12,v22 for v11,v21 in the formula
above to obtain v12,v22 .We are now in a position to evaluate whether collusive
behavior can be sustained throughout both phases. The value from adhering to the
collusive agreement is v11,v21    (depending on which state of demand holds)
but the value from deviating is 20  0.8v12, 10  0.8v22   .

Since the gains from adhering to a tacit agreement of no rebates are relatively
small when there is low demand, it might is reasonable to check whether collusive
behavior could be enforced when there is a high state of demand, but not the low one.
If this degree of collusion could be sustained then current profits would be 10 in
periods of high demand, but only 2 in periods of low demand. We let v13,v23 denote
the values of the firm in the two states under this arrangement. can be directly applied
here too. To solve for v13,v23 we can directly apply the algebraic manipulation
described in the previous paragraph. Substituting v13,v23 for v11,v21 and 10,2 for
10,3 in the recursion for firm value yields

v13

v23


0.75 0.25
0.5 0.5

10
2

In this case deviant behavior would not be observed in the low demand periods since
it entails lower current profits and a lower expected value of the firm next period.

5 Incomplete Information in Markov Games
The last issue we address on this topic is the role of incomplete information.

5.1 Imperfect monitoring
The situation becomes more complicated when players in a repeated or stage

game cannot deduce the choices made at a given stage from its outcome. One
rationale for why the price of crude oil oscillates is that OPEC members cannot infer
exactly how whether each country is abiding to its allotment as determined by the
OPEC cartel. If only aggregate oil production by OPEC members and nonmembers is
common knowledge, It is conceivable that OPEC might make its allocation decisions
and recommendations to its members on the basis of that aggregate.
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The following experiment captures the elements of the dilemma facing a cartel as
its seeks to enforce collusive behavior. There are two (or more) cartel members who
choose either high or low production each period, and we denote their choices in
period t ∈ 0,1,…  by q1t,q2t where qjt ∈ l,h. The current profits to each producer
depends on the choices of both, and also crude oil supply by producers who are not
cartel members, and are not modeled as players in this experiment. At the end of
period t each cartel producer receives his own payoff, as well as information about
total output produced that period, Qt, which takes on two values, denoted H and L
respectively. The profits of each producer j ∈ 1,2 only depends on his own
production choice and the signal received about total production. We denote the
current profit of the producer j ∈ 1,2 in period t by qjt,Qt and assume:

h,L  l,L  h,H  l,H
We assume that both producers have a sufficiently large share of the market that their
individual choices significantly affect the total output. Let Prq1t,q2t denote the
probability that Qt  H given choices q1t,q2t.Naturally, the higher the output of either
producer, the higher the probability that high aggregate output is recorded. That is

Prh,h  Prh, l  Prl,h  Prl, l  0
Thus the expected current profit from choosing h when the other producer chooses l is

Eh,Q|q2t  l  ≡ 1 − Prh, lh,L  Prh, lh,H
We assume that choosing h yields higher expected profits at the end of the period
regardless what the other player decides. This assumption can be expressed as

Eh,Q|q2t  ≡ 1 − Prh,q2th,L  Prh,q2th,H
 El,Q|q2t  ≡ 1 − Prl,q2tl,L  Prl,q2tl,H

for q2t ∈ l,h. This assumption implies that absent repercussions, the dominant
strategy of each cartel member is to choose h each period. The payoff to producers at
the end of the game are the discounted sum of payoffs

∑
t0


tqjt,Qt

where  ∈ 0,1 is a discount factor that reflects the interest rate and the probability of
the game continuing another period.

The framework and its accompanying assumptions imply there is a subgame
perfect equilibrium solution in which each cartel producer picks the strategy qjt  h for
all t ∈ 0,1,…  and j ∈ 1,2. It is also easy to infer from our discussion of the perfect
monitoring case that the trigger strategy profile there is also a solution to the game if
the probability of reaching the high aggregate demand when both players choose low
production (denoted by Prl, l), the gains from deviating (measured by strength of the
inequality above), and the interest rate (which is −1 − 1) are all small enough. From
the cartel’s perspective, however, this equilibrium has the unfortunate feature, that the
reversionary state is absorbing: once in the punishment phase, they cannot escape.
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Hence the question naturally arises whether there exists a less severe punishment
that nevertheless deters either party from defecting from the cooperative choice of low
production.

We seek symmetric solutions where both firms produce low output during
cooperative phases of the game, where a finite sequence of high output choices by
both firms characterize punishment phases, and where punishment phases are
triggered by high aggregate outputs occurring too frequently. Let V1 denote the current
value of the firm next period if low aggregate output is observed and V2 the current
value next period if a reversionary phase has just begun. By definition

V2  E ∑
t0

−1
tqjt,Qt|q1t,q2t  l, l  V1

where  is the length of the reversionary phase.
For simplicity we focus on the existence of solutions where punishment is triggered

as soon as high aggregate output is observed. To deter either firm from deviating in a
cooperative phase we require
1 − Prl, ll,L  V1   Prl, ll,H  V2   1 − Prh, lh,L  V1   Prh, lh,H  V2 

The left side of the inequality is the expected value of the first producer if both
producers choose l. Given q1t,q2t  l, l, the probability of observing aggregate
production of H and consequently reverting to the punishment phase is Prl, l,
reducing the expected value of both firms to l,H  V2  each. Otherwise the value
of both firms is l,L  V1 , reached with probability 1 − Prl, l. On the right side is
the expected value of the first producer when he chooses h, and the other producer
chooses l. Conditional on aggregate production Qt ∈ H,L, the first producer is
better off choosing h over l, because l,L  h,L and l,H  h,H. Since
Prl, l  Prh, l, the inequality can only hold if the difference between V1 and V2 is
sufficiently large: that is the feasibility of a trigger strategy solution rests on the fact
that deviating from l to h is more likely induce a punishment phase, which might deter
a producer if it is costly enough.

We now further simplify this problem by assuming that
0  Prl, l  Prh, l  Prl,h  1

This assumption implies that whenever either firm deviates from the cooperative
strategy of low production, the aggregate indicator of production is H, but that the
indicator is not a perfect monitoring device, since Prl, l  0, meaning that even when
both firms fully adhere to the cooperative strategy, the indicator of aggregate
production is sometimes H.

In this specialization the inequality for incentive compatibility to cooperation
simplifies to

1 − Prl, ll,L  V1   Prl, ll,H  V2   h,H  V2

and the value of the firm at the beginning of a punishment phase becomes:
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V2 ∑t0

−1
t  V1  l,H1 − /1 −   V1

words, the expected current benefit from deviating by setting a high production level is
less than the product of a successful deterrent and the difference in the probabilities
induced by producing at a high versus low level.

The most severe deterrent is to impose an eternal punishment, which would imply
V2  l,H/1 − 

substituting this equation back into the incentive compatibility condition we obtain
1 − Prl, ll,L  V1   Prl, ll,H  h,H  1 − Prl, ll,H/1 − 

Making V1 the subject of the inequality we obtain
1 − Prl, ll,L  V1  − 1 − Prl, ll,H  h,H − l,H  1 − Prl, ll,H/1 − 

V1 
h,H − l,H
1 − Prl, l

− l,L  l,H
1 − 

We remark that this inequality simplifies to the model of perfect monitoring when
Prl, l  0.

There are two further extensions we should mention. The first is whether the
overall value of the collusive arrangement can be increased by reducing the length of
the punishment phase. This is a straightforward exercise which we leave to the
reader. Second is the question about whether the firms should revert to a punishment
phase as soon as high aggregate output is observed, or whether some lenient criterion
should be impose instead as an acknowledgement that high output is observed even
when both firms fully adhere to the cooperative arrangement. This is a difficult problem
to solve, and lies beyond the scope of this course.
5.2 Hidden information

The third reason for volatility in relationships that we investigate revolves around
private information that players have about themselves. Consider a workforce pool of
laborers who team up in pairs to undertake construction jobs throughout the suburban
neighborhoods in a big city. Workers are initially assigned at random to each other for
their first job. Jobs are identical. Once assigned to his job, each partner chooses
simultaneously whether to fully complete the job or only perform shoddy work. The
payment each partner receives at the end of the period depends on the joint
performance of the pair. At the end of every period, they decide whether to continue
working with each other or not. The partnership is dissolved unless both partners wish
to remain paired to each other. Teams who decide to break their match after working
with each other join the pool of unmatched workers, and are then randomly assigned
new partners. Workers differ in their ability, skilled workers are able to perform
competent work with less effort than unskilled workers. However it is impossible to
distinguish between the two types, because unskilled workers can also perform
competently, albeit at greater effort.
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If two skilled workers are teamed together then their payoff matrix looks like:

Figure 12.23
If a skilled worker is matched with an unskilled worker, the matrix looks like:

Figure 12.24
Finally if two unskilled workers are matched together then the payoff matrix looks

like:

Figure 12.25
We assume the discount factor as the probability of continuing work next

period,and in this way consider a game comprising an indefinite number of rounds.
Regardless of who meets whom, the dominant strategy for a one round game is to
leave the job incomplete.

Consider first the full information case where players are initially randomly
assigned to match pairs, play a single round, and then observe their partner’s type
before making a decision about dissolving the match. It is optimal for a pair of skilled
workers to reach a cooperative agreement to complete successive jobs once they

Copyright 2008 by the Trustees of the Leland Stanford Junior University



MILLER AND PRASNIKAR: STRATEGIC PLAY,draft 2

recognize their partner is skilled, providing the probability of continuing the partnership
is high enough to support a trigger strategy. This cooperative strategy cannot be
supported by any other pair types. Therefore one solution to the game is for everyone
to quit their first job before completion, and upon discovering their partner’s type vote
to continue the partnership if he is skilled. Thus skilled partners remain together and
enter a cooperative partnership of completing jobs, while everyone else returns to the
general pool of workers which is gradually depleted of skilled workers.

If there are a sufficiently low proportion of unskilled workers in the total population,
there is also a solution in which skilled workers complete the job in the first period, and
retain their partner if and only if the partner does the same thing. This solution does
not use the worker’s type as information determining the continuation of the match. So
if this strategy profile is a solution for the full information case, it also holds in the
hidden information case too. Completing the job in the first period sends a signal to
your partner that you are a skilled worker.

6 Summary
This chapter introduced the dual concepts of stages and transition probabilities as

tools for parsimoniously representing games where there are elements of repetition.
One question we answered is whether solutions to stage and Markov games can be
found by simply joining the solutions for each stage played independently. In stage
games (where the probability transition is independent of the choices made), strategy
profiles formed this way are indeed a subset of the solution set for the whole game. In
Markov games (where the probability transitions are affected by choices), the
arguments developed in Chapter 4 on investment and Chapter 6 on perfect
information games apply here with equal force: we would not expect this approach
generate a solution to the game.

A second question we answered is whether all the solution to stage games can be
derived by piecing together the solutions of each stage game. to one of the solutions
to the game can indeed be derived this way. Here we focused on repeated games,
games with one stage that are repeated, either a finite number of times, or indefinitely
with some probability of continuing from one round to the next. The first result is that if
every stage has a unique solution, and the stage game is finite, then it also has unique
solution, found by piecing the stage solutions together. However if more than one of
the stages has multiple solutions, or a stage with multiple stages, then there are
solutions to the game which cannot be found by piecing together the stages.

The third result is called the folk theorem, applies to finitely repeated games in
which the kernel game supports multiple strategic solutions. We characterized the
multiplicity of solutions to the repeated game in this case. If a kernel game is uniquely
solved, there is a unique solution to a game that repeats the kernel a finite number of
times. However there may be multiple solutions if the kernel is repeated indefinitely.
The fourth result, which applies to infinite horizon games with discounting, establishes
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the existence of strategic form solutions that lack a counterpart in analogous games
with the same kernel but a fixed finite horizon. We focused on one type of strategy,
called a trigger strategy because it rationalizes the notion of collective punishment for
those who deviate from agreed upon norms. In a trigger strategy solution, playing
what would be the best reply in the kernel yields less than the long term benefits
obtained by cooperating with the other players. Opportunities for coordination depend
on the payoff parameters and the probability of repetition (or the discount factor.)

Thus if the stage in a two player repeated game has multiple solutions, then the
area enclosed by the payoffs and the individual rationality constraints determines the
set of average payoffs that can be attained. The solution strategies may induce
individual players to engage in investment or commitment even though there is
nothing in the technology to

Taken at face value both these results are troublesome for game theory because
they reduce the power of the theory to deliver testable predictions. Furthermore, the
coordination issues involved in arriving at one of several strategic form solutions seem
incredible, revealing another unattractive feature of the Nash equilibrium concept. The
fact that so many alternatives are available naturally raises the question about how
players agree upon any one of the solutions. This led us to a new interpretation of
multiple pure strategy solutions, as self enforcing agreements. Leaders choose
amongst multiple solutions to achieve coordination between players. The less the
potential for coordination between players, the greater the rent that leaders can
extract.

The argument that the choice of a solution is a self enforcing contract is quite
persuasive but this still leaves unanswered what is the mechanism by which the
solution is selected. We take up this in the following two chapters on negotiations.
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