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1 Introduction

Several auction formats we analyze share the same direct revelation game, at
least for certain information sets. Appealing to the revelation principle discussed in the
previous chapter, this implies they have the same solution payoffs to each bidder and
the auctioneer. We discuss this form of equivalence in Section 5, before introducing
revenue equivalence, a weaker form, in Section 6. When bidders are risk neutral, and
their valuations are distributed as independently and identically across bidders, then a
wide range of auction mechanisms yield the same expected payoffs to the auctioneer
and each bidder. This is called the revenue equivalence theorem. Under these
conditions, both the auctioneer and the bidders are indifferent between what auction
mechanism is used. Indeed it is straightforward to calculate the solution bid functions
for any auction satisfying the conditions of the revenue equivalence theorem from the
solution to the second price auction (which itself satisfies the conditions).

There are four main reasons why the revenue equivalence theorem might not
apply, and the first three of these are discussed in Section 2. When bidders are not
risk neutral, say risk averse, or if the private valuations are not identically distributed,
then the equivalence may break down. A special kind of asymmetry arises when
bidders collude, and this is complicated by the fact that different auctions create
different incentives amongst the bidders to collude. Finally the theorem does not apply
to common value auctions, where bidders receive different pieces of information about
an item they would value the same way if they shared all their information with each
other.

Common value auctions are discussed in Sections 3 and 4. We begin with a
description of the winner’s curse, a pervasive empirical phenomenon that has no
rational basis. Then we derive the optimal bidding rules for three different types of
common value auctions, and compare the expected revenue generated by each of
them. The last topic we investigate, in Section 4, are auctions where the bidders are
differentially informed about a common value. In this case uninformed bidders follow a
randomized strategy of bidding according to a probability distribution that yields an
expected value of zero and also limits the expected information rents of the informed
bidder.

2  When does Revenue Equivalence Fail?

There are three main reasons why different types of auctions might not yield
the same expected return to the seller: Bidders might be risk averse, not risk neutral.
The private valuations of bidders might be drawn from the probability distribution that
are not identical. The signals bidders receive about a common value might not be
independent. (The revenue equivalence theorem does apply to auctions in which the
value that bidders attach to the auctioned item is unknown to them and related, but
only if the signals they receive about the value are independent, and they come from
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the same distribution.)The theorem does not apply when bidders receive signals about
the value of the object to them that are correlated with each other.

We investigate these three possibilities in turn. Then we analyze collusion and
entry in auctions. We explain why some types of auctions are more susceptible to
collusive behavior than others. Finally we ask under what conditions the seller should
encourage more bidders by providing information about the value of the auctioned
item.

2.1 Attitude towards risk

The revenue equivalence theorem implies that in private value auctions, the
bidders and the auctioneer are indifferent between a wide range of auctions if they are
risk neutral. For example we showed that the all pay auction, the first price sealed bid
auction (which is strategically equivalent to the descending price auction in this case)
and the second price sealed bid auction (strategically equivalent to an ascending
auction) are all revenue equivalent. But what if bidders are risk averse?

In the case of second price sealed bid auctions with private values, the arguments
we used before apply to risk averse bidders in this case. It remains a weakly dominant
strategy for each player to bid his or her valuation. Therefore the optimal bidding
strategy for the second price sealed bid auction (and also the Japanese and English
auctions) is independent of a bidder’s attitude towards risk and uncertainty when
private values are drawn from a common probability distribution.

The same claims cannot be made for first price sealed bid auctions with private
values. In this case, note first that a strategy of bidding your valuation guarantees
exactly zero surplus. If you place a lower bid than your valuation your expected
surplus initially increases until it reaches the maximum for a risk neutral bidder, and
then falls, but the variance of the surplus increases as well. Since a risk averse
gambler is willing to trade a lower expected value to reduce the amount of uncertainty,
he accordingly bids higher than a risk neutral bidder.

So when comparing first and second price sealed bid auctions, the revenue
generated by a second price auction is independent of the bidders’ preferences over
uncertainty, since bidding is unaffected. Yet the revenue generated by the first price
auction is the same as the revenue generated by a second price auction when bidders
are risk neutral. Therefore risk averse bidders generate more revenue in a first price
auction than they would in a second price auction, and they generate more revenue in
a first price auction than do risk neutral bidders.

2.2  Asymmetric valuations
In many auctions where there are private valuations, the bidders have different
uses for the auctioned object, and this may be common knowledge to all the bidders.
If a particular bidder knows the probability distributions that each of the other

valuations are drawn from, he will typically use that information when making his own
bid. This in turn affects the revenue equivalence theorem, and also the auctioneer’s
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preferences towards different types of auctions.

We consider an example of asymmetry that illustrates an important consideration.
Instead of assuming that all bidders appear the same to the seller and to each other,
suppose that bidders fall into two recognizably different classes. Instead of there being
a single distribution F(v) from which the bidders draw their valuations, there are two
cumulative distributions, F1(v) and F(v). Bidders of type i € {1,2} draw their
valuations independently from the distribution Fi(v).

Let fi(x) denote the probability density function of Fi(x).

Consider a first price auction where there are only two bidders.

The private valuation of the first bidder is drawn from a probability distribution F1(v)
that stochastically dominates the probability distribution for the other probability
distribution F2(v). In fact we make a stronger assumption, that for all v

Fiv) _ Fa(v)

Fi(v) — Fa(v)
Then b;(v) < by(v). The intuition is to bid aggressively from weakness and vice versa.
Suppose each bidder sees his valuation, but does not immediately learn whether he
comes from the high or low probability distribution. At that point the bidding strategy
cannot depend on which probability distribution the valuation comes from. Then each
bidder is told which probability distribution his bid is drawn from. How should he revise
his bid? The second (first) bidder learns that the first (second) bidder is more likely to
draw a higher (lower) valuation than himself, realizes the probability of winning falls
(rises), so adjusts his upwards (downwards).

Since b1(v) < b2(v), the possibility arises that the second bidder will win the auction
with a lower valuation than the first. In other words the first price sealed bid auction is
inefficient, because aggressive bidding by the second bidder, and low balling by the
first bidder, sometimes lead to the second bidder winning the auction with a lower
valuation than the first. We may contrast this outcome with a second price auction
where it remains optimal to bid your valuation, implying that the auction is always won
by the bidder with the highest valuation.

2.3 Collusion

Collusion is a special form of asymmetry. Imagine we start out with N
independently and identically distributed valuations, we suppose that C of them form a
cartel and submit only one bid, or more commonly, agree on who should submit the
highest bid. We compare agreements with second form of cartelization, entry
deterrence. Whether this is voluntary or enforced is also a question of importance. (In
this case the number of bidders falls. A slightly different analysis, since they might be
keeping out medium versus low bidders. this is less effective.) Note that a cartel action
only has effect if a member would have won anyway, and also continues to win
despite the fact that a lower bid has been tendered. With reference to Figure 16.1,
cartels are less likely to be effective if there are a large number of bidders. And in the
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case of a small number of bidders, there are rents to be had to winning bidders
regardless of whether there is a cartel or not.

Up until now we have taken as a given that the bidders will follow the rules that
characterize the auction. This is not necessarily a reasonable assumption, and some
the rules of some auctions may be easier to enforce than others. How easy is it to
enforce a collusive practice? In a second price auction or English auction the onus is
on the lower valuation bidders to essentially withdraw form the auction. To break any
cartel arrangement they must bid above the highest valuation person. his implies that
would In a first price auction, the bidder only has to bid above the low value that the
highest valuation person submits by submitting a slightly higher value.

3 Common Value

This section of this chapter begin our investigation of common value auctions with
a discussion of the winner’s curse, a pervasive phenomenon in empirical studies that
has no theoretical basis in optimization and equilibrium solutions. We describe how
the winner’s curse arises, its magnitude show the losses it generates, and thus
provide some heuristics for avoiding it. Then we derive the optimal bidding rules in
three different types of common value auctions. Specifically we concentrate on the
first price sealed bid (and descending )auctions, the second price sealed bid (and
limited information ascending) auctions, and the Japanese (or full information)
ascending auction. this naturally leads us to an examination of which auction yields
the most revenue. We show that the auctions listed in order are ranked from the
lowest to the highest. These results are also sensitive to the structure for the same
reasons that revenue equivalence breaks down in auctions with private value case,
asymmetrically distributed signals (including collusion) and risk aversion

Throughout the previous two chapters we maintained the assumption that each
bidder knows how to value the object. We relax this assumption in this third chapter on
auctions, and explore how that affects the conclusions we have drawn thus far. We
proceed in stages. First we relax the assumption that relaxes the assumption that
valuations are drawn independently, and asks the same set of agenda questions we
laid out in Chapter 18. Much of our discussion will revolve around another extreme
case. Instead of assuming values are independently distributed, we shall assume they
are exactly the same, and denote the common value by v. Naturally this is not at all an
interesting avenue to explore if all the bidders know v. We shall accordingly assume
that each bidder has some private information about the common value, but not all of
them know it exactly. of Our discussion is accordingly divide into three parts. under
what circumstances the revenue equivalaffiliated signals common value with
independent and identically distributed signals.

We will assume that

Un(S1,...,SN) = U(Sn,S1,...,SN)
Notice that there are two assumptions embodied in the definition of symmetric
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valuations. The fact that the arguments can be interchanged means that each bidder
does not care about the permutation of the other signals. Noting that the mapping on
the right side is not subscripted by n, all bidders have the same utility function

Common value but independent signals

There are many situations in which bidders all know one characteristic of the
object, and each bidder has some private information about the other characteristics.
For example, suppose the common value of the object is the sum of independent
signals received by bidders:

N
V= Zk:l Sk

Each signal might represent part of the value of the object that each bidder is privy to.
In this case the revenue equivalence theorem applies.

Suppose the value of the object to each bidder is the same, but this value is
unknown to each bidder. We assume the n" bidder receives a signal s, which is
distribute about the common value v, and write

Sh =V+E&p
where
en = E[V|lh] -V
In general one might expect that &, might not be independent of all ¢,. For example if
v is stochastically evolving and bidders have the opportunity to sequentially observed
its quality, one might suppose that those bidders who have more recently inspected
the object have more precise knowledge.
A slight generalization of this is a model in which each bidder places more

significance on their own draw, but does attach some value to the assessments of
others too.

N
o
Vnp = Sp + = S
n "TN :Z:hq k

3.1 The winner’s curse

When other bidders have information that you lack about the value of the object for
sale, winning the auction may cause you to decrease your conditionally expected
value of the object. Failure to take into account the bad news about others’ signals
that comes with any victory is called the winner’s curse. The winner’s curse describes
the fact that winning an auction may convey new and unfavorable information about
the item. Because all other bids are less than the winning bid, the expected value of
the item to the winning bidder might fall when the outcome of the auction is
announced.

To fully explain the winner’s curse, it is useful to draw upon the notation we have
already developed. As above, consider an object worth v, to the n™ bidder, but this
value is unknown to the bidder until after the auction is over. Before the auction
begins, suppose the bidder receives a signal s, about the value v,. Without loss of
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generality, one can order the set of possible signals so that higher valued objects tend
to generate more favorable signals, or more precisely that E[sy|v, ] iS an increasing
function in v,. The expected value of v, given the signal s, is expressed as E[vn|sn].
We also make the standard assumption that higher bids are induced by better signals,
or the bidding function, denoted b(sy), is increasing in s,, which is what one would
expect in equilibrium.

Under that assumption, if the n" bidder wins the auction, he will realize his signal
exceeded the signals of everybody else, that is s, = max{si,...,Sn}, SO he will
condition the expected value of the item on this new information. His expected value is
now the expected value of v, conditional upon observing the maximum signal:

E[vn|max{s1,...,Sn} ]
This is the value that the bidder should use in the auction, not E[vy|s, ], because he

should recognize that unless his signal is the maximum he will receive a payoff of
zero. The winner's curse is defined as:

W(sn) = E[vn|sn] — E[Vn|max<s1,...,Sn} ]
Since the max operator is a convex increasing function of its arguments
E[vn|max{s1,...,Sn}] = max{E[Vn|S1],...,E[Vn|Sn]}

max{E[ValS1],...,E[Vn|Sn]}
it follows that W(s,) is a positive function. Although bidders should take the winner’'s
curse into account, there is widespread evidence that novice bidders do not take this
extra information into account when placing a bid.

Notice how the role of incentives and plays a role with the nature of inference in

this game. If we changed the auction rules and award the object to the person who is
closest to the true value of the object, then each bidder would minimize (?)

E[ (b —V)?[sn ]
and bid the solution to that problem, which is E[vnl|sn].

To gauge the importance of the winner’s curse, it is useful to worth calculating
analytically for some probability distributions where this is feasible.

3.2  Symmetric Solutions
We will look at the symmetric solutions.

Japanese auction

In a Japanese (ascending) auction, bidders remaining in the auction observe who
has dropped out and at what point. For this reason they are able to infer the valuation
of the bidders as they withdraw from the auction.

Consider the first bidder to withdraw from the auction. At that point the only way he
can win is for everybody to withdraw simultaneously, which would only occur in a
symmetric equilibrium if all bidders received the same signal. In that case the winner
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of the auction would receive a utility of u(s™, ...,s™). WE consider the properties of
the strategy profile defined by the N reservation price functions:

b (sMN) = y(s™, ..., sMN)
Now set:
b(N-D(s(N-1) sy — y(sN-D, . sN-1) s(N))

and more generally
b (st skl sy = y(s®, ..., s® sk sy

We note first that the strategy reveals the valuations of bidders who withdraw from
the auction, allowing the remaining bidders to condition on the value of the object with
this new information.

This strategy is the unique symmetric Nash equilibrium solution to the auction
game. We first show that if players have followed the strategy so far then the
proposed strategy weakly dominates setting a higher reservation price.

Instead of bidding b® (s®,stD sy suppose the bidder with the k™ highest
valuation bids b® (s® + A,s®, ... ,sMN)) The only way this deviation might affect her
payoff is if she consequently wins the auction. In that case

s+ A>sD > > sb0
and the bidder with the k™ highest valuation would pay the reservation price of the
highest valuation bidder, namely
b@(s® .. sk gl+) (N

to obtain an item which yields a utility of
u(s®@,s® sk gle) - sy

Since u(ss1,S2,...,Sn) is increasing in its first argument
u(s®,s® s@ sk sle) sy < y(s®,sM s@ sk glel) sy

= b(Z)(s(l)’S(Z)' ..., skD glkel) ,S(N))

This establishes that it is not profitable by deviating from the strategy profile by bidding
more.

Proving claim about equilibrium is completed by showing setting a reservation price
lower than the proposed limit is not a best response to the other bidders playing this
strategy profile. If the highest valuation bidder wins she pays b® (s, ...,sM) which
does not depend on her own reservation price. Accordingly suppose the highest
valuation bidder reduces his reservation price below b™(s®, ... sMN) and
consequently loses the auction, by dropping out as before the bidder with the k™
highest valuation, meaning

s > 5@ > >0 5 M)A
Then the utility foregone is greater than the bid because
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u(s®,s@, ..., sNM) > us®,s@ ... sMN)
= b@(s@, ... sN)

Therefore the only effect from setting a lower reservation price than the one proposed
by the formula is to risk losing the auction when it is profitable to win.

English (second price sealed bid) auction

Here we define A(s,m;,) as the expected value of u(ss,...,Sn) conditional on the
bidder’s own signal s, and conditional on the highest signal from the N — 1 other
bidders being m,.

Sn = s!
Mp = Max{S1,...,Sn-1,Sn+1,... SN}

Note first if there are only two bidders, meaning N = 2, then the arguments
developed in our discussion of the Japanese auction imply that each bidder sets a
reservation price of u(sp,sn) = A(s,m,). More generally, the solution to a second price
sealed bid auction with N bidders is to set a reservation price of A(sp,Sn). We show
that this is a symmetric Nash equilibrium. Suppose everyone else is following this
strategy. Then the value of setting a reservation price at b is found by integrating the
expected value of the object upon winning the auction when your value is v, and the
second highest value is u, after subtracting payment A(u, 1), and integrating over the
probability distribution of the second highest valuation in the region [v, b]

b
J A = A1 ]G (ulv)du
The optimal value of b is deduced from the fact that A(v, u) is increasing in u, and
therefore A(v,u) > A(u, u) if and only if v > u. Consequently the solution to the
optimization problem is determined by its unique stationary point. Differentiating with
respect to b we directly obtain the first order condition A(v,b) = A(b,b), which, upon
solving for b, establishes the claim.

It now follows that the winner of the auction pays the reservation price, or sealed

bid, of the bidder with the second highest valuation, namely

Av@ v@) = E[u(v®,v@ v® VIV > max{Vv® . v
Exercise Conduct some English auctions
1. Regress the winning bids on the two highest signals

A(s,mp) = E[u(sl,...,sN)

Dutch (first price sealed bid) auction

The third type of auction we study with a symmetric information structure
underlying valuations is a Dutch or a first price sealed bid auction. As before we
suppose that there exists a symmetric equilibrium with strategies b(v,) that are
differentiable with respect to vy, the n' bidder’s valuation for each n € {1,...,N}.
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To derive this equilibrium strategy, suppose the n bidder’s valuation is v, but she
bids b(v*) instead of b(v,). Then she wins the auction if v* > u, which is the event
1{v* > u}. If she wins the auction, and the valuation of the second highest bidder is g,
her expected utility is [A(vn, ) — b(v*)]. Denote by The

J [vn, 1) =B > 1} G (uva )

v
v
V*
= | [Avn ) = b IG (v )
The expression above shows gives an expression for the expected utility from

bidding b(v*) instead of b(v,). But if b(v,) is a Nash equilibrium strategy Accordingly
we differentiate the expression to obtain the first order condition

(A0 ¥) =BG W ) = ') [ 6/ Guvn )
= b'(v)[G(v*|vn) — G(y|Vn)]
= b'(v*)G(V*|Vn)
because G(v|vn) = 0. But if b(vy) is a Nash equilibrium strategy then
[A(Vn,Vn) = B(Vn)]G'(ValVn) = B'(Vn)G(Vn|Vn)

Supposing that the minimum acceptable bid is v, it follows that b(v) = v, meaning that
a bidder receiving the lowest valuation bids the minimal acceptable bid, then the
differential equation can be solved to obtain

b(va) = | ACu )AL vn)

where L(ulvn) is defined as

L(uvn) = exp[— ; (é((tt”tt)) dt}

The easiest way to check this is a solution is to differentiate L(u|v,) with respect to vy
and substitute it back into the first order equation above.

3.3 Revenue comparisons

In private value auctions we proved a revenue equivalence theorem that showed,
amongst other things that the expected revenue to the auctioneer generated by the
first price sealed bid, the second price sealed bid and the Japanese auction is the
same. This result does not extend to symmetric auctions where the bidders valuations
are dependent.

First price versus second price

The second price sealed bid auction yields more revenue than its first price
counterpart.

Second price versus ascending
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The expected revenue from a Japanese auction is
E[b@w®, ... ,vW)] = E[u(v®,v@ v& vN)]

Whether the second price sealed bid or Japanese auctions yields more revenue or not
turns on the sign of

Eu(v@®,v@ vO® VN D = y@ > max{v®, . ..  vVNL]
—E[u(v® ,v® V®  VO)VD 5 y@ 5 max{V®, . VML]

In words, do the bottom N — 2 valuations (V®, ...,V tend to rise with the top
valuation VD, thus raising expected utility when we fix the second highest valuation
V@ at v@7? If so, we can show that the expected revenue from the Japanese auction
is higher than the expected revenue from the second price sealed bid auction. Noting
the expected revenue from the latter is E[A(v®,v®)], the inequality implies Denote
the expected revenue from the second price sealed bid auction by r,(v) and the
expected revenue from the Japanese auction by r3(v). Then

E{E[A(VP®,v@)VD = yv@ ]}
= E{E[u(v@ v@ V& VI)vD = y@ > max{v®, . . VNIV = y@}
< E{E[u(v@,v@ V& VIIVD > y@ > max{Vv®, . . VEOLIVE = y@ 1
= E[u(V®,v@ v® _ vN)]
= E[b@V® V®, .. V)]
and the result is proved.

4 Differential Information

Symmetry, an assumption we have maintained thorough much of this chapter, can
be violated in many ways. We have already discussed how the revenue equivalence
theorem breaks down when private values are drawn from different probability
distributions. We now analyze the effects of differential information in a first price
sealed bid common value auction. We consider the extreme case, where one bidder
receives a perfect signal that reveals the common value, and where the other bidders
do not receive any signal at all.

Suppose uninformed bidders always makes the same positive bid, denoted b. This
is an example of a pure strategy. Is this pure strategy part of a Nash equilibrium? The
best response of the informed bidder is to bid a little more than b when the value of the
object, denoted v, is worth more than b, and less than b otherwise. Therefore the
uninformed bidder makes an expected loss by playing a pure strategy in this auction,
because he incurs a loss whenever he submits the highest bid. The pure strategy of
bidding below v is not in equilibrium either. If that were the case, then the best
response of the informed bidder would be to bid v at most and win the auction every
time, garnering a rent of at least E[v] — v. But if the informed player bids v, then the
best response of the uninformed bidder is not to bid a price below v, but some price
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above the informed bid, but less than the unconditional mean E[v]. This proves that
there is no equilibrium in which the uniformed player chooses a pure strategy. These
arguments can also be extended to auctions where is more than one uninformed
agent. To summarize, uninformed players in sealed bid first price auctions must make
random bids to avoid being exploited by the informed players.

Notice that for risk neutral bidders, if you do not know your value v for the object,
then you should form a subjective probability distribution for this random variable. You
could then compute its expected value E[v]. Knowing E[Vv] just as good as knowing v
itself if no one else knows anything about v that you do not know, but not if your
competitors have some information about v that you do not have.

The argument above shows that the uninformed bidder plays a mixed strategy in
this game. One can show that in equilibrium the informed bidder bids according to the
strategy of treating the auction like a private value auction when calculating the
informed bidder’s equilibrium submission, and that the uninformed bidder should bid
according to the unconditional distribution of the informed bidder.

In equilibrium, we can prove the informed bidder chooses

b(v) = E[ulp < V]
and the uninformed bidder chooses a bid at random from the interval [v, E[V]]
according to the probability distribution H defined by
H(b) = Pr[b(v) < b]
If the informed bidder bids b(v) then the uninformed bidder follows the prescribed
strategy then the probability that the informed bidder wins is
PrIE[ulu < v] < b] = H(b)
For consider the problem facing the informed bidder, when the uninformed bidder
follows the mixed bidding strategy prescribed for him. If the informed bidder with
valuation v submits b(v*) instead of b(v), his expected net payoff is
H(b(v*))(v=b(v*)) = F(v*)(v-Db(v*))
Differentiating with respect to v* we obtain
d[F(v*)b(v*)]
dv*
At the stationary point v = v*. Therefore for all v opitmality requires:

L FWbW)] = Fv

= F(v*)v

Integrating both sides of the equation with respect to v from v to any v, € [v,V] we
obtain:

F(Vn)b(Va) = I: F(v)vv

or

Copyright 2008 by the Trustees of the Leland Stanford Junior University



Chapter 20: Violating Equivalence 12

b(Vn) = F(\l/n) jv Fv)vdv = E[ulu < V]

as required.
With regards the uninformed bidder, we now show that the payoff from bidding any
value in the range [v,E[v]] yields the same expected payoff, because bidding any
b, € [v,E[v]] yields
E[VIb(v) < b2] —bz = E[v]v < b-(b2)] - b,

= b[b™*(b2)] - b2

=Dby—hy

=0
Note that bidding more than E[v] would imply that he wins the auction with probability

one, for an expected payoff of E[v]. Therefore it is not optimal for the uninformed
bidder to defect from the proposed strategy by bidding less than v or more than E[v].

5  Summary

This chapter explored the reasons why revenue equivalence fails. There are four
conditions that are used to prove this result, and we discussed each of them in turn.
The fourth, auctions with dependent signals, lead into a more general discussion of
equilibrium bidding rules for symmetric auctions, and how their expected revenues are
ranked . Finally our discussion or differential information in auctions shows how mixed
bidding strategies is likely to be endemic to the bidding process when the symmetry
assumption is violated.
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